Cycle Discrepancy of d-Colorable Graphs

Authors

  • Laeeq Aslam
  • Shahzad Sarwar
  • Muhammad Murtaza Yousaf
  • Waqar ul Qounain

Abstract

We show that cycle discrepancy of a 3-colorable graph, G, on at least five vertices is bounded by 2 n 3 2 ; that is, cycdisc(G)  2n 3 2 . We also show that this bound is best possible by constructing 3-colorable graphs, on at least five vertices for which cycle discrepancy is at least 2n 3 2 . Let Gt be the set of 3-colorable graphs on n ≥ 5 vertices with t vertices in the smallest color class. We show that for a graph, G from Gt , cycdisc(G)  2 t 2 . Furthermore a graph G' exists in Gt with large cycle discrepancy, such that cycdisc (G')  2 t 2 for t ≥ 1. We also construct such d-colorable graphs for d> 3 that have maximum possible cycle discrepancy.

References

JICA report (2000), Feasibility study on the development of Munda dam multipurpose project in Islamic Republic of Pakistan.

Singh, P., Jain, S. K., & Kumar, N. (1997). Estimation of snow and glacier-melt contribution to the Chenab River, Western Himalaya. Mountain Research and Development, 49-56.

Chyurlia, J. P. (1983) Water Resources Report, Nepal Land Resources Mapping Project. Renting Earth Sciences Limited, Ottawa

Lim, K. J., Engel, B. A., Tang, Z., Choi, J., Kim, K. S., Muthukrishnan, S., & Tripathy, D. (2005). Automated web gis based hydrograph analysis tool, WHAT1.

Arnold, J. G., & Allen, P. M. (1999). Automated methods for estimating base flow and ground water recharge from stream flow records .

Michel, C., Andréassian, V., & Perrin, C. (2005). Soil Conservation Service Curve Number method: How to mend a wrong soil moisture accounting procedure?. Water Resources Research, 41(2).

Soulis, K. X., Valiantzas, J. D., Dercas, N., & Londra, P. A. (2009). Analysis of the runoff generation mechanism for the investigation of the SCS-CN method applicability to a partial area experimental watershed. Hydrol Earth Syst Sci, 6, 373-400.

Queensland Urban Drainage Manual – Volume 1 second edition 2007, http://www.dews.qld.gov.au/__data/assets/pdf_f ile/0008/78128/qudm2013-provisional.pdf

Rutledge, C. W., & Whitaker Jr, N. A. (2003). U.S. Patent No. 6,650,998. Washington, DC: U.S. Patent and Trademark Office.

Tallaksen, L. M. (1995). A review of baseflow recession analysis. Journal of hydrology, 165(1), 349-370.

Sharma, K. P. (1993). Role of melt water in major river systems of Nepal. IAHS Publications-Publications of the International Association of Hydrological Sc., 218, 113-122.

Butt, M. J., & Bilal, M. (2011). Application of snowmelt runoff model for water resource management. HydrologicalProcesses, 25(24), 3735-3747.

Bashir, F., & Rasul, G. (2010). Estimation of water discharge from Gilgit Basin using remote sensing, GIS and runoff modeling. Pakistan J. Meteor, 6(12), 97-113.

Ashraf, A., Ahmad, S. S., Aziz, N., & Shah, M. T. A. (2012). Preliminary Estimation of Snow Covers Extents of Astore River Basin in Northern Areas, Pakistan. Journal of Geography and Geology, 4(2), p124.

Singh, P., & Bengtsson, L. (2003). Effect of warmer climate on the depletion of snowcovered area in the Satluj basin in the western Himalayan region. Hydrological sciences journal, 48(3), 413-425.

Dey, B., Goswami, D. C., & Rango, A. (1983). Utilization of satellite snow-cover observations for seasonal stream flow estimates in the Western Himalayas. Nordic hydrology, 14(5), 257-266.

Tahir, A. A., Chevallier, P., Arnaud, Y., Neppel, L., & Ahmad, B. (2011). Modeling snowmeltrunoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. Jr. of Hydrology, 409(1), 104-117.

Martinec, J., & Rango, A. (1986). Parameter values for snowmelt runoff modelling. Journal of Hydrology, 84(3), 197-219.

Georgievsky, M. V. (2009). Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images. Environmental Research Letters, 4(4), 045017.

Martinec, J., Rango, A., Roberts, R., 2007. Snowmelt-Runoff Model (SRM) user’s manual. USDA Jornada Experimental Range, New Mexico State University, LasCruces, NM 88003, USA

WMO, 1992. Simulated Real-time Intercomparison of Hydrological Models, Geneva, Switzerland

Tachikawa, T., M. Hato, M. Kaku, A. Iwasaki (2011): Characteristics of ASTER GDEM Version 2. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2011, Vancouver, Canada. https://lpdaac.usgs.gov/sites/default/files/public/ aster/docs/Tachikawa_etal_IGARSS_2011.pdf

Riggs, G. A., Hall, D. K., & Salomonson, V. V. (2006). MODIS snow products user guide to collection 5. Digital Media, 80.

Artan, G., Gadain, H., Smith, J. L., Asante, K., Bandaragoda, C. J., & Verdin, J. P. (2007). Adequacy of satellite derived rainfall data for stream flow modeling. Natural Hazards, 43(2), 167-185.

Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.

Qamer, F. M., Abbas, S., Saleem, R., Shehzad, K., Ali, H., & Gilani, H. (2012). Forest cover change assessment in conflict-affected areas of northwest Pakistan: The case of Swat and Shangla Districts. Journal of Mountain Science, 9(3), 297-306.

Downloads

Published

2016-06-22

Issue

Section

Electrical Engineering and Computer Science