Progressive Collapse of Reinforced Concrete Frame Structure under Column Damage Consideration

Authors

  • Usman Ilyas
  • S H Farooq
  • I. Shahid
  • M. Ilyas

Abstract

The research work is focused on progressive collapse analysis of reinforced concrete framed structure under column damage consideration using commercial software SAP2000. Nine story frame is selected and designed under gravity loads as per Pakistan Building Code. The frame is analyzed for progressive collapse under three damage cases; corner column damage, edge column damage and internal column damage. The frame is subjected to loading as described by General Services Administration (GSA) guideline for carrying out linear static analysis. The results include the variation of bending moment of beams and evaluation of demand capacity ratios(DCR) in the beams of the longer direction. The vertical deflections of the damaged joint are determined in cases with 0%, 40%, 60%, 80% and full damaged consideration. According to the GSA guideline atypical frame building having DCR values greater than 1.5 indicate more damage potential in the structural members. It is concluded that the edge column case with long bays is found critical because the bays with longer span have more damage as compared with smaller span bays. It can lead collapse of the frame in short interval of time and there is more possibility of loss of lives under such condition of structures. Based on this research it is suggested that the practicing engineer should incorporate the GSA guidelines for loading along with the other loads so that progressive collapse potential may be reduced up to some extent.

References

N. I. of Standards, T. (NIST), Announcing the ADVANCED ENCRYPTION STANDARD (AES), Technical Report FIPS Publication 197, 2001.

Rivest, R., Shamir A., Adleman L., A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM 21 (1978) 120–126.

Koblitz, N., Elliptic curve cryptosystems, Mathematics of Computation 48 (1987) 203– 209.

Applied Cryptography: Protocols, Algorithms, and ource Code in C, John Wiley and Sons, 2nd edition, 1996.

Introduction to Hardware Security and Trust, Springer, 2012.

Kocher,P. C., Jae, J., Jun, B., Differential Power Analysis, in: Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology, pp. 388–397.

P. Kocher, P. C., Timing Attacks on Implementations of Di E-Hellman RSA DSS and Other Systems, in: Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology, pp.104–113.

Model Sim, ww.model.com last accessed October, 19th 2014

Xilinx XPOWERwww.xilinx.com/products/ design_tools/logic_design/verification/xpower.h tml last accessed October 19th 2014

Digital Integrated Circuits: A Design Perspective, Prentice Hall, 1996.

Power Analysis Attacks: Revealing the Secrets of Smart Cards, Springer, 2007.

Tiri, K., Verbauwhede, I., A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation, in: Proceedings of the Design, Automation and Test in Europe Conference and Exhibition(DATE), pp. 246– 251.

Bo, Y., Xiangyu, L., Cong, C., Yihe, S., Liji, W., Xiangmin, Z., An AES Chip with DPA resistance using hardware-based random order execution, Journal of Semiconductors 33 (2012) 065009.

Medeiros, S. F., The Schedulability of AES as a Countermeasure against Side Channel Attacks, in: Security, Privacy, and Applied Cryptography Engineering, 2012, pp. 16–31.

Zafar, Y., Har, D., A Novel Countermeasure to Resist Side Channel Attacks on FPGA Implementations, International Journal On Advances in Security 2 (2009).

Liu, P.C., Chang, H.C., Lee, C.Y., A True Random-Based Differential Power Analysis Countermeasure Circuit for an AES Engine, IEEE Transactions on Circuits and Systems II: Express Briefs 59 (2012) 103–107.

Yang, S., Wolf, W., Vijaykrishnan, N., Serpanos, D. N., Xie, Y., Power Attack Resistant Cryptosystem Design: A Dynamic Voltage and Frequency Switching Approach, in: Proceedings of the conference on Design, Automation and Test in Europe, pp. 64–69.

Bucci, M., Luzzi, R., Guglielmo, M., letti, A. T., A Countermeasure Against Differential Power Analysis Based on Random Delay Insertion, in: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3547–3550.

Ratanpal, G. B., Williams, R. D., Blalock, T. N., An On-Chip Signal Suppression Countermeasure to Power Analysis Attacks, IEEE Transactions on Dependable and Secure Computing 1 (2004) 179–189.

Standaert, O.X., Peeters, E., Rouvroy, G., Quisquater J.J., An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays, Proceedings Of the IEEE 94 (2006) 382–394.

Amaar, A., Ashour, I., Shiple, M., Efficient Implementation of AES Algorithm Immune to DPA Attack, in: Proceedings of 14th international Conference on Modelling and Simulation, pp. 396–401.

Strachacki, M., Szczepanski, S., Implementation of AES Algorithm Resistant to Differential Power Analysis, in: Proceedings of 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 214–217.

TEMPEST: A signal problem https:// www.nsa.gov/public_info/_files/cryptologic_sp ectrum/tempest.pdf last accessed October 5th 2014

Downloads

Published

2016-06-22

Issue

Section

Civil Engineering,Structures, Construction, Geo technology, Water, Transportation