Behavior of Granular Soils under Dry and Saturated Conditions in Cyclic Torsional Shear Tests
Abstract
This paper presents results from drained cyclic torsional shear tests on Toyoura sand and a residual soil under dry and saturated conditions. The relationships of shear strain, z with shear stress, z ; normalized shear stress, z z / ; vertical strain, z ; and equivalent shear modulus, Geq are compared. The investigation of granular decomposition with respect to its influence on accumulation of vertical strains and shear stiffness were of major interest. It is concluded that the strength and deformation response of granular soils, if decompose with time due to water action, are largely different from what we expect from conventional soils of durable grains. It is anticipated from this study that the laboratory tests on residual soils can provide more reliable and realistic parameters for site characterization and as an input for numerical models.References
Nusrat A., Tahir M. A.; Proc. 10th East Asia and Pacific Conference on Structural Engineering and Construction, Bangkok, Thailand (2006).
Tahir M. A., Nusrat A.; Proc. 31st International conference on Our World in Concrete and Structures, Singapore, (2006), 79-84.
Tahir M. A,. Goraya R. A.; Proc. 9th East Asia and Pacific Conference on Structural Engineering and Construction, Bali, Indonesia, (2003).
Tahir M. A., Pichai N.; Proc. 26th International conference on Our World in Concrete and Structures, Singapore, (2001), 613-620.
Gopalan M. K., Haque M. N.; Cement & Concrete Research, 15/4(1985) 694-702.
Davis R. E.; Technical Memorandum, American Concrete Pipe Association, (1954).
Gonnermann H. F.; Proc. ASTM, 25/2(1925), 237-250.
Murdock J. W.; Beaton R. J.; ASTM Bulletin, 221, (1957) 68-73.
Nasser K. W., Kenyon J. C.; Journal of American Concrete Institute, 81-7(1984) 47-53.
Davis R. E., Carlson R. W., Kelly J. W., Davis H. E.; Journal of American Concrete Institute, 33(1937) 577-612.
Day R. L., Shi C.; Cement and Concrete Research, 24/8(1994) 1485-1491.
Dunstan M.; Proc. 2nd CANMET/ACI International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 1(1986), 171-200.
Gebler S. H., Klieger P.; Proc. 2nd CANMET/ACI International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 1(1986), 1-50.
Ghosh R. S.; Canadian Journal of Civil Engineering, 3(1976), 68-82.
Giacco G., Violini D., Zappitelli J., Zerbino R.; Proc. 3rd CANMET/ACI International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Supplementary Papers, (1989), 188-202.
Gopalan M. K., Haque M. N.; Cement & Concrete Research, 19/4(1989) 634-641.
Hassan K. E., Cabrera J. G.; Proc. 6th CANMET/ACI International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 1(1998), 21-38.
Xie J., M. Eng., Influence of fineness of pozzolans on consistency and strength of mortar, Asian Institute of Technology, Bangkok, Thailand, (1996).
Kokubu M.; Proc. 5th International Symposium on the Chemistry of Cement, 4(1968) 75-105.
Malhotra V. M., Painter, K. E.; The International Journal of Cement Composites and Lightweight Concrete, 11/1(1989) 37-66.
Mather B.; Investigation of cement replacement materials, Report 12: US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, Miscellaneous Paper 6-123(1), (1965).
Monzo J., Paya J., Peris-Mora E., Borrachero M. V.; Proc. 5th CANMET/ACI International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 1(1995), 339-354.
Hornain H., Miersman F., Marchand J.; Proc. 4th CANMET/ACI International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 1(1992), 21-36.
ACI 211.1-91 Committee Report; Standard practice for selecting proportions for normal, heavyweight and mass concrete, ACI, (1991).