Biogas Processing by Anaerobic Digestion of Organic Solid Waste
Abstract
The demand for fossil fuel increases the development of renewable energy, but due to high prices, people are shifting their attention from non-renewable sources to renewable sources to fulfill their energy demands. This research is based on the conversion of biomass into biogas to fulfill the energy demand most cheaply and effectively. Organic solid waste (OSW) had analyzed when the balloon was burst, it was due to the acidification of acids present in the OSW and resulting in the production of a large amount of carbon dioxide. Other experiments show the production of carbon dioxide by the expansion of the balloon, due to the first stage of the process that is hydrolysis. Later anomalous behavior has been observed, as balloons were sucked into the bottles. Hence creating an anaerobic condition in the bottle, during this stage batches were sometimes kept in the sun to raise the temperature of the culture.
References
[2] Divya, D., Gopinath, L. R., & Merlin Christy, P. (2015). A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renewable and Sustainable Energy Reviews, 42, 690-699.
doi: 10.1016/j.rser.2014.10.055.
[3] Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valero, J. R. (2012). Bio-processing of agro-byproducts to animal feed. Crit Rev Biotechnol, 32(4), 382-400. doi: 10.3109/07388551.2012.659172.
[4] Pavi, S., Kramer, L. E., Gomes, L. P., & Miranda, L. A. S. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour Technol, 228, 362-367.
doi: 10.1016/j.biortech.2017.01.003.
[5] Muhammad Nasir, I., Mohd Ghazi, T. I., & Omar, R. (2012). Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl Microbiol Biotechnol, 95(2), 321-329.
doi: 10.1007/s00253-012-4152-7.
[6] Oliveira, F., & Doelle, K. (2015). Anaerobic Digestion of Food Waste to Produce Biogas: A Comparison of Bioreactors to Increase Methane Content: A Review. Journal of Food Processing & Technology, 6(8), 1-3. doi: 10.4172/2157-7110.1000478.
[7] Abubakar, B. S. U. I., & Ismail, N. (2012). Anaerobic Digestion of Cow Dung For Biogas Production. ARPN Journal of Engineering and Applied Sciences, 7(2), 169-172.
[8] Campuzano, R., & Gonzalez-Martinez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag, 54, 3-12.
doi: 10.1016/j.wasman.2016.05.016.
[9] Matheri, A. N., Ndiweni, S. N., Belaid, M., Muzenda, E., & Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80, 756-764.
doi: 10.1016/j.rser.2017.05.068
[10] Liu, C., Wang, W., Anwar, N., Ma, Z., Liu, G., & Zhang, R. (2017). Effect of Organic Loading Rate on Anaerobic Digestion of Food Waste under Mesophilic and Thermophilic Conditions. Energy & Fuels, 31(3), 2976-2984.
doi:10.1021/acs.energyfuels.7b00018.
[11] Ukpai, P. A., & Nnabuchi, M. N. (2012). Comparative study of biogas production from cow dung, cow pea and cassava peeling using 45 litres biogas digester. Advances in Applied Science Research, 3(3), 1864-1869.
[12] Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H., & Lee, C. T. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 60, 714-723.
doi: 10.1016/j.rser.2016.01.117
[13] Intanoo, P., Rangsanvigit, P., Malakul, P., & Chavadej, S. (2014). Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour Technol, 173, 256-265. doi: 10.1016/j.biortech.2014.09.039.
[14] Alejo-Alvarez, L., Guzman-Fierro, V., Fernandez, K., & Roeckel, M. (2016). Technical and economical optimization of a full-scale poultry manure treatment process: total ammonia nitrogen balance. Environ Technol, 37(22), 2865-2878.
doi: 10.1080/09593330.2016.1167963.
[15] Kirubakaran, V., Sivaramakrishnan, V., Shanmugapriya, S., Premalatha, M., & Subramanian, P. (2009). Autocatalytic Kinetics and Mechanism of Biogas Generation. Energy Sources, Part A, 31(19), 1700-1707.
doi: 10.1080/15567030802459669.
[16] Moradhasseli, M., & Mohamadi, S. (2014). Performance evaluation of a facultative aerated lagoon for the purpose of reviewing the design parameters. Scientia Iranica, 21(2), 231-240.
[17] Aworanti, O. A., Agarry, S. E., Arinkoola, O. A., & Adeniyi, V. (2011). Mathematical Modelling For the Conversion of Animal Waste to Methane in Batch Bio-Reactor. International Journal of Engineering Science and Technology, 3(1), 573-581.
[18] Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol, 120, 78-83. doi: 10.1016/j.biortech.2012.06.058.
[19] Wu, B. (2013). Advances in the use of CFD to characterize, design and optimize bioenergy systems. Computers and Electronics in Agriculture, 93, 195-208.
doi: 10.1016/j.compag.2012.05.008.
[20] Lee, Y., & Oa, S.-W. (2015). Resource-recovery processes from animal waste as best available technology. Journal of Material Cycles and Waste Management, 18, 201-207. doi: 10.1007/s10163-015-0422-7.
[21] Hilal, Y. A., & Atalay, F. S. (2010). Modeling of the Anaerobic Decomposition of Solid Wastes. Energy Sources, Part A, 25(11), 1063-1072.
doi: 10.1080/00908310390233586.
[22] Zhu, B., Gikas, P., Zhang, R., Lord, J., Jenkins, B., & Li, X. (2009). Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresour Technol, 100(3), 1122-1129. doi: 10.1016/j.biortech.2008.08.024.
[23] Rathinakumar, V., Dhinakaran, G., & Suribabu, C. R. (2016). Effect of step geometry and water quality on efficiency of cascade aeration. Scientia Iranica, 23(3), 918-925.
[24] Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383-392. doi: 10.1016/j.rser.2014.05.038.
[25] Effuggi, A., Gelosa, D., Derudi, M., & Rota, R. (2008). Mild Combustion of Methane-Derived Fuel Mixtures: Natural Gas and Biogas. Combustion Science and Technology, 103(3), 481-493.
doi: 10.1080/00102200701741368.
[26] Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol, 98(1), 130-134.
doi: 10.1016/j.biortech.2005.11.010.
[27] Ilaboya, I. R., Asekhame, F. F., Ezugwu, M. O., Erameh, A. A., & Omofuma, F. E. (2010). Studies on Biogas Generation from Agricultural Waste; Analysis of the Effects of Alkaline on Gas Generation. World Applied Sciences Journal, 9(5), 537-545.
[28] Shilton, A., Powell, N., Broughton, A., Pratt, C., Pratt, S., & Pepper, C. (2013). Enhanced biogas production using cow manure to stabilize co-digestion of whey and primary sludge. Environ Technol, 34(17-20), 2491-2496. doi: 10.1080/09593330.2013.774032.
[29] Yong, Z., Dong, Y., Zhang, X., & Tan, T. (2015). Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 78, 527-530.
doi: 10.1016/j.renene.2015.01.033.