Comparing MERRA and MERRA-2 Reanalysis Datasets with Mast Measured Wind Data for Karachi, Pakistan

Muhammad Asim, Amjad Hussain, Ghulam Moeen uddin, Nasir Hayat, Faisal Iqbal Qureshi

Abstract


The aim of the study was to compare reanalysis wind data with mast measured data at Hawks Bay, Karachi, which is in the coastal region of Pakistan. MERRA and MERRA-2 reanalysis datasets, assimilated by NASA global data assimilation system, is used for this study. The comparison between wind data has been made for 10 m, 50 m and 80 m heights and on the daily and hourly basis. Statistical parameters that have been used for this study are; correlation coefficient, mean bias error, standard deviation of error and root mean square error. MERRA-2 data shows better results for wind speed at 10 m and for wind direction at 80 m in terms of statistical parameters and correlation coefficient. MERRA-2 gives best correlation coefficients for wind speed which are 0.70 and 0.91 for hourly and daily respectively at 10 m whereas correlation coefficients for wind direction are 0.66 and 0.76 for hourly and daily respectively at 80 m. In Pakistan, the wind energy industry is in developing phases, the current work will contribute towards wind energy utilization in Pakistan.


Full Text:

PDF

References


Siddique, S., & Wazir, R. (2016). A review of the wind power developments in Pakistan. Renewable and Sustainable Energy Reviews, 57, 351-361.

Kamran, M. (2018). Current status and future success of renewable energy in Pakistan. Renewable and Sustainable Energy Reviews, 82, 609-617. doi:https://doi.org/10.1016/j.rser.2017.09.049.

Zameer, H., & Wang, Y. (2018). Energy production system optimization: Evidence from Pakistan. Renewable and Sustainable Energy Reviews, 82, 886-893. doi:https://doi.org/10.1016/j.rser.2017.09.089.

Mahmood, A., Javaid, N., Zafar, A., Ali Riaz, R., Ahmed, S., & Razzaq, S. (2014). Pakistan's overall energy potential assessment, comparison of LNG, TAPI and IPI gas projects. Renewable and Sustainable Energy Reviews, 31, 182-193. doi:https://doi.org/10.1016/j.rser.2013.11.047.

Hong, S.-Y., & Pan, H.-L. (1996). Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10), 2322-2339.

Sher, H. A., Murtaza, A. F., Addoweesh, K. E., & Chiaberge, M. (2015). Pakistan’s progress in solar PV based energy generation. Renewable and Sustainable Energy Reviews, 47, 213-217.

Zecca, A., & Chiari, L. (2010). Fossil-fuel constraints on global warming. Energy Policy, 38(1), 1-3. doi:https://doi.org/10.1016/j.enpol.2009.06.068.

Khan, K. S., & Tariq, M. (2018). Wind resource assessment using SODAR and meteorological mast – A case study of Pakistan. Renewable and Sustainable Energy Reviews, 81, 2443-2449. doi:https://doi.org/10.1016/j.rser.2017.06.050.

Memon, N., Jafari, A. H., Yousuf, I., & Khan, S. A. (2010). Analysis of data of AEDB-UNDP (WEP) wind masts installed in Gharo-Keti Bandar wind corridor: AEDB, Islamabad, Pakistan.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Julio Bacmeister, Liu, E., Woollen, J. (2011). MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24(14), 3624-3648. doi:10.1175/jcli-d-11-00015.1.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. doi:10.1175/jcli-d-16-0758.1.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Kim, G.-K. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14), 3624-3648.

Bosilovich, M., Lucchesi, R., & Suarez, M. (2015). MERRA-2: file specification.

Janjai, S., Laksanaboonsong, J., Nunez, M., & Thongsathitya, A. (2005). Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Solar energy, 78(6), 739-751. doi:http://dx.doi.org/10.1016/j.solener.2004.09.009.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Reichle, R. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454.

Staffell, I., & Green, R. (2014). How does wind farm performance decline with age? Renewable Energy, 66, 775-786. doi:http://dx.doi.org/10.1016/j.renene.2013.10.041.

Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Silva Santos, C. (2014). Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sensing of Environment, 152, 480-492. doi:http://dx.doi.org/10.1016/j.rse.2014.07.017.

Hawkins, S., Eager, D., & Harrison, G. P. (2011, 6-8 Sept. 2011). Characterising the reliability of production from future British offshore wind fleets. Paper presented at the IET Conference on Renewable Power Generation (RPG 2011).

Ruti, P. M., Marullo, S., D'Ortenzio, F., & Tremant, M. (2008). Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: Analyses, QuikSCAT and buoy data. Journal of Marine Systems, 70(1–2), 33-48. doi:http://dx.doi.org/10.1016/j.jmarsys.2007.02.026.

Dhanju, A., Whitaker, P., & Kempton, W. (2008). Assessing offshore wind resources: An accessible methodology. Renewable Energy, 33(1), 55-64. doi:http://dx.doi.org/10.1016/j.renene.2007.03.006.

Petersen, E. L., Mortensen, N. G., Landberg, L., Højstrup, J., & Frank, H. P. (1998). Wind power meteorology. Part I: climate and turbulence. Wind Energy, 1(1), 2-22. doi:10.1002/(SICI)1099-1824(199809)1:1<2::AID-WE15>3.0.CO;2-Y.

Schallenberg-Rodriguez, J. (2013). A methodological review to estimate techno-economical wind energy production. Renewable and Sustainable Energy Reviews, 21, 272-287. doi:http://dx.doi.org/10.1016/j.rser.2012.12.032.

Fox, N. I. (2011). A tall tower study of Missouri winds. Renewable Energy, 36(1), 330-337. doi:http://dx.doi.org/10.1016/j.renene.2010.06.047.

Carvalho, D., Rocha, A., & Gómez-Gesteira, M. (2012). Ocean surface wind simulation forced by different reanalyses: Comparison with observed data along the Iberian Peninsula coast (Vol. 56).

Tahir, Z. R., Asim, M., Jamil, S., Shad, R., Hayat, N., Moaz, A., Safyan, M. (2018). Comparison of Reanalysis, Analysis and Forecast datasets with measured wind data for a Wind Power Project in Jhimpir, Pakistan. Journal of Physics: Conference Series, 1102, 012004. doi:10.1088/1742-6596/1102/1/012004.

Tahir, Z. R., Sarfraz, M. S., Asim, M., Kamran, M. S., Imran, S., & Hayat, N. (2018). Evaluation of ERA-Interim and NCEP-CFSR Reanalysis Datasets against in-situ Measured Wind Speed Data for Keti Bandar Port, Pakistan. Journal of Physics: Conference Series, 1102, 012001. doi:10.1088/1742-6596/1102/1/012001.

Lun, I. Y., & Lam, J. C. (2000). A study of Weibull parameters using long-term wind observations. Renewable Energy, 20(2), 145-153.

Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Silva Santos, C. (2014). WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Applied Energy, 117, 116-126. doi:http://dx.doi.org/10.1016/j.apenergy.2013.12.001.

Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Silva Santos, C. (2014). Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula (Vol. 134).

Staffell, I., & Pfenninger, S. (2016). Using bias-corrected reanalysis to simulate current and future wind power output. Energy, 114, 1224-1239.

Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Santos, C. S. (2014). Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote sensing of environment, 152, 480-492.

Miinalainen, T. (2017). An evaluation of wind indices for KVT Meso, MERRA and MERRA2: Comparison for 4 met stations in Norway.






Copyright (c) 2020 Pakistan Journal of Engineering and Applied Sciences

Powered By KICS