Review of Applications of Ferrous Based Shape Memory Smart Materials in Engineering and in Biomedical Sciences

Rana Atta ur Rahman, Daniel Juhre, Thorsten Halle

Abstract


Shape memory alloys have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect and super-elasticity.  Shape memory alloys (SMAs) are those alloys that when deformed returns to its pre-deformed shape upon heating, they can also restore their original shape by removing the load. Research on properties of newly advent of many types of iron-based shape memory alloys (Fe-SMAs), shows that they have great-potential to be the counterpart of Nitinol. These Fe-based shape memory alloys have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol (high processing cost and low cold workability). Some of the Fe-based shape memory alloys show super-elasticity. Iron-based shape memory alloys, especially Fe-Mn-Si alloys have a great-potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. A detailed review of applications of pre-existing Fe-based SMAs is performed in this paper. Different fields of applications of Fe-based SMA are discussed. These applications are categorised and tabulated in different fields. An analysis is performed that in which field the Fe-based SMA applications are mostly exist. An analysis is performed showing percentage increase in the applications of Fe-based SMA since 1990 to date.

Full Text:

PDF

References


Allenstein, U., Ma, Y., Arabi-Hashemi, A., Zink, M., & Mayr, S. G. (2013). Fe-Pd based ferromagnetic shape memory actuators for medical applications: Biocompatibility, effect of surface roughness and protein coatings. Acta Biomaterialia, 9(3), 5845–5853. http://doi.org/10.1016/j.actbio.2012.10.040

Benafan, O., Noebe, R. D., & Halsmer, T. J. (2015). Shape Memory Alloy Rock Splitters (SMARS)-A Non-Explosive Method for Fracturing Planetary Rocklike Materials and Minerals. National Aeronautics and Space Administration (NASA), (July), 1–35.

Chang, W.-S., & Araki, Y. (2016). Use of shape-memory alloys in construction: a critical review. Proceedings of the Institution of Civil Engineers, 169(2), 87–95. http://doi.org/10.1680/jcien.15.00010

Cladera, A., Weber, B., Leinenbach, C., Czaderski, C., Shahverdi, M., & Motavalli, M. (2014). Iron-based shape memory alloys for civil engineering structures: An overview. Construction and Building Materials, 63, 281–293. http://doi.org/10.1016/j.conbuildmat.2014.04.032

Czaderski, C., Shahverdi, M., Brönnimann, R., Leinenbach, C., & Motavalli, M. (2014). Feasibility of iron-based shape memory alloy strips for prestressed strengthening of concrete structures. Construction and Building Materials, 56, 94–105. http://doi.org/10.1016/j.conbuildmat.2014.01.069

Czaderski, C., Weber, B., Shahverdi, M., Motavalli, M., Leinenbach, C., & Lee, W. (2015). Iron-based shape memory alloys (Fe-SMA) - a new material for prestressing concrete structures. Smar 2015, (September).

Data, P. P. (2005). US Patent.

Della Rovere, C. A., Alano, J. H., Silva, R., Nascente, P. A. P., Otubo, J., & Kuri, S. E. (2012). Influence of alloying elements on the corrosion properties of shape memory stainless steels. Materials Chemistry and Physics, 133(2–3), 668–673. http://doi.org/10.1016/j.matchemphys.2012.01.049

Dezfuli, F. H., & Alam, M. S. (2016). Seismic vulnerability assessment of a steel-girder highway bridge equipped with different SMA wire-based smart elastomeric isolators. Smart Mater. Struct., 25(7), 1–16.

Doyle, I. M. P., Dale, G., Choi, H., & City, B. (2012). (12) United States Patent, 2(12), 2–11. http://doi.org/10.1126/science.Liquids

Druker, A. V., Esquivel, I., Perotti, A., & Malarria, J. (2014). Optimization of Fe-15Mn-5Si-9Cr-5Ni shape memory alloy for pipe and shaft couplings. Journal of Materials Engineering and Performance, 23(7), 2732–2737. http://doi.org/10.1007/s11665-014-0981-0

Druker, A. V., Perotti, A., Esquivel, I., & Malarría, J. (2015). Design of Devices and Manufacturing of Fe-Mn-Si Shape Memory Alloy Couplings. Procedia Materials Science, 8, 878–885. http://doi.org/10.1016/j.mspro.2015.04.148

Druker, A. V., Perotti, A., Esquivel, I., & Malarría, J. (2014). A manufacturing process for shaft and pipe couplings of Fe-Mn-Si-Ni-Cr shape memory alloys. Materials and Design, 56, 878–888. http://doi.org/10.1016/j.matdes.2013.11.032

Faran, E., & Shilo, D. (2016). Ferromagnetic Shape Memory Alloys-Challenges, Applications, and Experimental Characterization. Experimental Techniques, 40(3), 1005–1031. http://doi.org/10.1007/s40799-016-0098-5

Farjami, S., Hiraga, K., & Kubo, H. (2005). Crystallography and elastic energy analysis of VN precipitates in Fe-Mn-Si-Cr shape memory alloys. Acta Materialia, 53(2), 419–431. http://doi.org/10.1016/j.actamat.2004.09.037

Francis, A., Yang, Y., Virtanen, S., & Boccaccini, A. R. (2015). Iron and iron-based alloys for temporary cardiovascular applications. Journal of Materials Science. Materials in Medicine, 26(3), 138. http://doi.org/10.1007/s10856-015-5473-8

Grässel, O., Krüger, L., Frommeyer, G., & Meyer, L. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. International Journal of Plasticity, 16(10), 1391–1409. http://doi.org/10.1016/S0749-6419(00)00015-2

Hedayati Dezfuli, F., & Alam, M. S. (2013). Shape memory alloy wire-based smart natural rubber bearing. Smart Materials and Structures, 22(4), 1–17. http://doi.org/10.1088/0964-1726/22/4/045013

Hedayati Dezfuli, F., & Alam, M. S. (2014). Performance-based assessment and design of FRP-based high damping rubber bearing incorporated with shape memory alloy wires. Engineering Structures, 61, 166–183. http://doi.org/10.1016/j.engstruct.2014.01.008

Janke, L. (2005). Applications of shape memory alloys in civil engineering structures-Overview, limits and new ideas. Materials and Structures, 38(279), 578–592. http://doi.org/10.1617/14323

Junliang, L., DU, Y., & Baochen, S. (2015). Application Research on Fe-based SMA in the Anti-breaking of Screw Connection. The 14th IFTOMM World Congress, Taipei, Taiwan, 14, 1–5.

Junliang, L., Yanlian, D., & Baochen, S. (2015). Application Research on Fe-based SMA in the Anti-breaking of Screw Connection. The 14th IFTOMM World Congress, Taipei, Taiwan, 1–5.

Kang, L., Zhizhong, D., Yongchang, L., & Lin, Z. (2013). A newly developed Fe-based shape memory alloy suitable for smart civil engineering. Smart Materials and Structures, 22(4), 45002. http://doi.org/10.1088/0964-1726/22/4/045002

Karaca, H. E., Karaman, I., Chumlyakov, Y. I., Lagoudas, D. C., & Zhang, X. (2004). Compressive response of a single crystalline CoNiAl shape memory alloy. Scripta Materialia, 51(3), 261–266. http://doi.org/10.1016/j.scriptamat.2004.04.002

Karaca, H. E., Turabi, A. S., Chumlyakov, Y. I., Kireeva, I., Tobe, H., & Basaran, B. (2016). Superelasticity of [001]-oriented Fe42.6-Ni27.9-Co17.2-Al9.9-Nb2.4 ferrous shape memory alloys. Scripta Materialia, 120, 54–57. http://doi.org/10.1016/j.scriptamat.2016.04.008

Kubo, H., Otsuka, H., Farjami, S., & Maruyama, T. (2006). Characteristics of Fe-Mn-Si-Cr shape memory alloys in centrifugal casting. Scripta Materialia, 55(11), 1059–1062. http://doi.org/10.1016/j.scriptamat.2006.07.058

Lee, W. J., Weber, B., Feltrin, G., Motavalli, M., & Leinenbach, C. (2012). Thermomechanical characterization of an Fe-Mn-Si-Cr-Ni-VC shape memory alloy for application in prestressed concrete structures, 544–552.

Lee, W. J., Weber, B., & Leinenbach, C. (2015). Recovery stress formation in a restrained Fe-Mn-Si-based shape memory alloy used for prestressing or mechanical joining. CONSTRUCTION & BUILDING MATERIALS, 95, 600–610. http://doi.org/10.1016/j.conbuildmat.2015.07.098

Leinenbach, C., Lee, W. J., Lis, A., Arabi-Hashemi, A., Cayron, C., & Weber, B. (2016). Creep and stress relaxation of a FeMnSi-based shape memory alloy at low temperatures. Materials Science and Engineering A, 677, 106–115. http://doi.org/10.1016/j.msea.2016.09.042

Li, C. C. (2006). Rock support design based on the concept of pressure arch. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1083–1090. http://doi.org/10.1016/j.ijrmms.2006.02.007

Lin, H. C., Lin, K. M., Chen, Y. S., & Yang, C. H. (2005). Ion nitriding of Fe-30Mn-6Si-5Cr shape memory alloyII. Erosion characteristics. Surface and Coatings Technology, 194(1), 74–81. http://doi.org/10.1016/j.surfcoat.2004.05.010

Liu, J., Zheng, H. X., Xia, M. X., Huang, Y. L., & Li, J. G. (2005). Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys. Scripta Materialia, 52(9), 935–938. http://doi.org/10.1016/j.scriptamat.2004.12.034

Liu, Y., Zhang, X., Xing, D., Qian, M., Shen, H., Wang, H., Sun, J. (2014). Shape memory effects of Ni 49.7 Mn 25.0 Ga 19.8 Fe 5.5 microwires prepared by rapid solidification. Physica Status Solidi (A), 211(11), 2532–2536. http://doi.org/10.1002/pssa.201431287

Maji, B. C., Das, C. M., Krishnan, M., & Ray, R. K. (2006). The corrosion behaviour of Fe-15Mn-7Si-9Cr-5Ni shape memory alloy. Corrosion Science, 48(4), 937–949. http://doi.org/10.1016/j.corsci.2005.02.024

Mishra, M., & Anish Ravindra, A. (2014). A comparison of conventional and iron-based shape memory alloys and their potential in structural applications. Int. J. of Struct. & Civil Engg. Res., 3(4), 96–112.

Moravej, M., & Mantovani, D. (2011). Biodegradable metals for cardiovascular stent application: Interests and new opportunities. International Journal of Molecular Sciences, 12(7), 4250–4270. http://doi.org/10.3390/ijms12074250

Nikulin, I., Sawaguchi, T., Ogawa, K., & Tsuzaki, K. (2016). Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe-15Mn-10Cr-8Ni-xSi austenitic alloys. Acta Materialia, 105, 207–218. http://doi.org/10.1016/j.actamat.2015.12.002

Otubo, J., Nascimento, F. C., Mei, P. R., Cardoso, L. P., & Kaufman, M. J. (2002). Influence of Austenite Grain Size on Mechanical Properties of Stainless SMA. Materials Science, 43(5), 916–919.

Reese, P. E. A., Kulchin, S. A., & City, F. (1990). 4,952,097.

Sato, A., Chishima, E., Soma, K., & Mori, T. (1982). Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metallurgica, 30(6), 1177–1183. http://doi.org/10.1016/0001-6160(82)90011-6

Sato, A., Kubo, H., & Maruyama, T. (2006). Mechanical Properties of Fe-Mn-Si Based SMA and the Application. Mater. Trans., 47(3), 571–579. http://doi.org/10.2320/matertrans.47.571

Sato, A., Yamaji, Y., & Mori, T. (1986). Physical properties controlling shape memory effect in Fe-Mn-Si alloys. Acta Metallurgica, 34(2), 287–294. http://doi.org/10.1016/0001-6160(86)90199-9

Sawaguchi, T., Kikuchi, T., Ogawa, K., Kajiwara, S., Ikeo, Y., Kojima, M., & Ogawa, T. (2006). Development of prestressed concrete using Fe-Mn-Si-based shape memory alloys containing NbC. Materials Transactions, 47(3), 580–583. http://doi.org/10.2320/matertrans.47.580

Sawaguchi, T., Maruyama, T., Otsuka, H., Kushibe, A., Inoue, Y., & Tsuzaki, K. (2016). Design Concept and Applications of Fe–Mn–Si-Based Alloys—from Shape-Memory to Seismic Response Control. Materials Transactions, 57(3), 283–293. http://doi.org/10.2320/matertrans.MB201510

Shahverdi, M., Czaderski, C., Annen, P., & Motavalli, M. (2016). Strengthening of RC beams by iron-based shape memory alloy bars embedded in a shotcrete layer. Engineering Structures, 117, 263–273. http://doi.org/10.1016/j.engstruct.2016.03.023

Shahverdi, M., Czaderski, C., & Motavalli, M. (2015). Strengthening of RC beams with iron-based shape memory alloy strips. Third Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, (February). http://doi.org/10.13140/RG.2.1.1029.6081

Shahverdi, M., Czaderski, C., & Motavalli, M. (2016). Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams. Construction and Building Materials, 112, 28–38. http://doi.org/10.1016/j.conbuildmat.2016.02.174

Shakoor, R. A., & Ahmad Khalid, F. (2009). Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium. Materials Science and Engineering A, 499(1–2), 411–414. http://doi.org/10.1016/j.msea.2008.08.042

Song, H. W., & Lu, S. M. (2001). Repair of a deep-mine permanent access tunnel using bolt, mesh and shotcrete. Tunnelling and Underground Space Technology, 16(3), 235–240. http://doi.org/10.1016/S0886-7798(01)00045-1

Terzić, A., Andrić, L., & Mitić, V. (2014). Mechanically activated coal ash as refractory bauxite shotcrete microfiller: Thermal interactions mechanism investigation. Ceramics International, 40(8 PART A), 12055–12065. http://doi.org/10.1016/j.ceramint.2014.04.045

Tseng, L. W., Ma, J., Wang, S. J., Karaman, I., Kaya, M., Luo, Z. P., & Chumlyakov, Y. I. (2015). Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Materialia, 89, 374–383. http://doi.org/10.1016/j.actamat.2015.01.009

Tsonos, A. D. G. (2010). Performance enhancement of R/C building columns and beam-column joints through shotcrete jacketing. Engineering Structures, 32(3), 726–740. http://doi.org/10.1016/j.engstruct.2009.12.001

Ullakko, K. (1996). Magnetically controlled shape memory alloys: A new class of actuator materials. Journal of Materials Engineering and Performance, 5(3), 405–409. http://doi.org/10.1007/BF02649344

Wang, C., Meyer, J., Teichert, N., Auge, A., Rausch, E., Balke, B., … Felser, C. (2014). Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 32, 020802. http://doi.org/10.1116/1.4866418

Watanabe, Y., Miyazaki, E., & Okada, H. (2002). Enhanced Mechanical Properties of Fe-Mn-Si-Cr Shape Memory Fiber/Plaster Smart Composite. Materials Transactions, 43(5), 974–983. Retrieved from http://www.jim.or.jp/journal/e/43/05/974.html%5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0036577896&partnerID=tZOtx3y1

Zhao, M., Li, J. C., & Jiang, Q. (2003). Cast Pipe Joints of Fe-15Mn-5Si-8Cr-5Ni-0.25C Shape Memory Alloy with High Carbon Content. Materialwissenschaft Und Werkstofftechnik, 34(8), 756–759. http://doi.org/10.1002/mawe.200390148






Copyright (c) 2019 Pakistan Journal of Engineering and Applied Sciences

Powered By KICS