Influence of Antimony Doping on Structure and Morphology of ZnO Nanowires Grown by Vapor-liquid-solid Technique

Authors

  • M Asghar Department of Physics, Islamia University of Bahawalpur

Abstract

As-grown and antimony (Sb) doped ZnO nanowires (NWs) have been successfully grown on Au-coated Si(1 0 0) substrate by vapor-liquid-solid (VLS) method. The growth temperature was kept at 950˚C purposefully to make Au layer act as a nucleation site. The length of Sb-doped ZnO NWs increases largely ~ 12 times longer than those of the undoped ZnO NWs; however the earlier structure is thinner than the later. Scanning electron microscopy and X-ray diffraction measurement of Sb-ZnO wires present good NWs morphology and high purity and crystallinity of the samples, respectively. Similarly the photoluminescence (PL) spectra of as-grown and Sb-doped ZnO NWs reveal the band-to-band transition without the significant defect level emission. However, PL peak due to the Sb-doped ZnO nanowires exhibits red shift as compared to that of as-grown ZnO NWs. Our results have been compared with the literature and interesting features have been discussed. 

References

1 N. Kitazawa, M. Aono, and Y. Watanabe, J. Phys. Chem. Sol. 75, 1194-1200 (2014).
2 C. M. Lieber and Z. L. Wang, MRS Bulletin 32, 99-108 (2007).
3 Y. Zhu, H. Yang, F. Sun, and X. Wang, Nanoscale Research Letters 11, 175 (2016).
4 Z. L. N. S. Ridhuan, A. A. Aziz, A. R. Khairunisak, Adv. Mat. Res. 364, 422-426 (2012).
5 N. K. Hassan, M. R. Hashim, M. A. Mahdi, and N. K. Allam, ECS J. Soli. Stat. Sci. Technol. 1, P86-P89 (2012).
6 J. Sun, J. Bian, Y. Wang, Y. Wang, Y. Gong, Y. Li, K. Liu, S. Zhang, Y. Liu, H. Liang, G. Du, and N. Yu, Electrochemical and Solid-State Letters 15, H164-H166 (2012).
7 M. Abbasi, Z. Ibupoto, M. Hussain, O. Nur, and M. Willander, Nanoscale. Res.Lett. 8, 320 (2013).
8 W.-K. Hong, J. I. Sohn, D.-K. Hwang, S.-S. Kwon, G. Jo, S. Song, S.-M. Kim, H.-J. Ko, S.-J. Park, M. E. Welland, and T. Lee, Nano Lett. 8, 950-956 (2008).
9 Y. Feng, K. Lee, H. Farhat, and J. Kong, Journal of Applied Physics 106, 104505 (2009).
10 F. Cai, J. Wang, Z. Yuan, and Y. Duan, J. Pow. Sourc. 216, 269-272 (2012).
11 S. Hussain, Y. Khan, V. Khranovskyy, R. Muhammad, and R. Yakimova, Prog Nat Sci: Mater Int 23.
12 A. Rivera, J. Zeller, A. Sood, and M. Anwar, J. Elect. Mat. 42, 894-900 (2013).
13 W.-J. Chen, J.-K. Wu, J.-C. Lin, S.-T. Lo, H.-D. Lin, D.-R. Hang, M. F. Shih, C.-T. Liang, and Y. H. Chang, Nanoscale Research Letters 8, 313 (2013).
14 K. Black, P. R. Chalker, A. C. Jones, P. J. King, J. L. Roberts, and P. N. Heys, Chem. Vap. Dep. 16, 106-111 (2010).
15 I. Isakov, M. Panfilova, M. J. L. Sourribes, and P. A. Warburton, phys. stat. sol (c) 10, 1308-1313 (2013).
16 W. W. Guo, M. Fu, C. Z. Zhai, and Z. C. Wang, Ceram Int 40.
17 K. L. C. C. C. Tee S. Y. Pung, X. H. Hou, Adv. Mater. Res. 364, 333-37 (2012).
18 C. C.-S. Hsu Hsu-Cheng, Chang Chia-Chieh, Yang Song, Chang Chen-Shiung, and Hsieh Wen-Feng, Nanotechnology 16, 297 (2005).
19 M. M. Brewster, X. Zhou, S. K. Lim, and S. Gradečak, J. Phys. Chem. Lett. 2, 586-591 (2011).
20 K.-B. L. A. Kar, M. Oye, M. A. Stroscio, M. Dutta, A. Nicholls and M. Meyyappan, Nanosca. Res. Lett. 6, 1-9 (2011).
21 R. B. Saunders, S. Garry, D. Byrne, M. O. Henry, and E. McGlynn, Cryst. Grow. Des. 12, 5972-5979 (2012).
22 N. S. Ramgir, K. Subannajui, Y. Yang, R. Grimm, R. Michiels, and M. Zacharias, J. Phys. Chem. C 114, 10323-10329 (2010).
23 Y. Zhu, H. Yang, F. Sun, and X. Wang, Nanoscale Research Letters 11, 175.
24 C. C. T. S. Y. Pung, K. L. Choy, X. H. Hou, Adv. Mater. Res. 364, 333-337 (2012).
25 H. Hsu-Cheng, C. Ching-Sheng, C. Chia-Chieh, Y. Song, C. Chen-Shiung, and H. Wen-Feng, Nanotechnology 16, 297 (2005).
26 S. Xiaowei and Y. Yang, ZnO Nanostructures and Their Applications (Pan Stanford Publishing).
27 I. Y. Y. Bu, Superlattices and Microstructures 96, 59-66 (2016).
28 T. K. Pathak, V. Kumar, and L. P. Purohit, Physica E: Low-dimensional Systems and Nanostructures 74, 551-555 (2015).
29 F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, Applied Physics Letters 87, 152101 (2005).
30 X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, Nano Lett 9, 2331-6 (2009).
31 C. Wu and Q. Huang, Journal of Luminescence 130, 2136-2141 (2010).
32 O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, The Journal of Physical Chemistry C 114, 12401-12408 (2010).
33 C.-L. Hsu, S.-J. Chang, H.-C. Hung, Y.-R. Lin, C.-J. Huang, Y.-K. Tseng, and I.-C. Chen, Journal of The Electrochemical Society 152, G378-G381 (2005).
34 S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, Nat Nano 6, 506-510 (2011).
35 L. Yue, Z. Zhang, Y. Ma, and W. Zhang, Journal of Nanomaterials 2016, 5 (2016).
36 S.-J. Young, C.-L. Chiou, Y.-H. Liu, and L.-W. Ji, Inventions 1 (2016).
37 S. Y. Lim, S. Brahma, C.-P. Liu, R.-C. Wang, and J.-L. Huang, Thin Solid Films 549, 165-171 (2013).
38 B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu, and D. Wang, Nano Letters 7, 323-328 (2007).
39 I. Javed, J. Tariq, R. Yu, N. Sajjad Haider, and A. Ishaq, Nano-Micro Letters 6 (2014).
40 V. Sallet, C. Sartel, C. Vilar, A. Lusson, and P. Galtier, Applied Physics Letters 102, 182103 (2013).
41 L. N. Protasova, E. V. Rebrov, K. L. Choy, S. Y. Pung, V. Engels, M. Cabaj, A. E. H. Wheatley, and J. C. Schouten, Catalysis Science & Technology 1, 768-777 (2011).
42 K. M. K. Srivatsa, D. Chhikara, and M. S. Kumar, Journal of Materials Science & Technology 27, 701-706 (2011).
43 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Advanced Functional Materials 12, 323-331 (2002).
44 X. Wang, C. J. Summers, and Z. L. Wang, Nano Letters 4, 423-426 (2004).
45 P. X. Gao, Y. Ding, and Z. L. Wang, Nano Letters 3, 1315-1320 (2003).
46 Y. Yang, J. Qi, W. Guo, Q. Liao, and Y. Zhang, CrystEngComm 12, 2005-2007 (2010).
47 M. A. M. A. NAWAZ, M. Y. SHAHID, N. UL AIN, F. IQBAL, F. MALIK, H. E. RUDA, Digest Journal of Nanomaterials and Biostructures 11, 537 - 546 (2016).
48 M. Asghar, M. Y. Shahid, F. Iqbal, K. Fatima, M. A. Nawaz, H. M. Arbi, and R. Tsu, AIP Advances 6, 035201 (2016).
49 Q. Li, K. Cheng, W. Weng, P. Du, and G. Han, Thin Solid Films 544, 466-471 (2013).

Downloads

Published

2018-09-11

Issue

Section

Sciences (Physics)