Insitu Photosynthesis and Stabilization of Copper Nanoparticles

Rabia Nazar

Abstract


A facile method to prepare copper nanoparticles by UV-irradiating a sample containing a radical photoinitiator and a copper-amine coordination compound of copper chloride is reported. In the absence of any inert gas protection, the copper-amine coordination compound was reduced directly to copper particles by UVirradiation. Poly vinylpyrrolidone (PVP) and pyrrole both were used as capping agents. Sodium ascorbate plays a role as an antioxidant for colloidal copper, due to its ability to scavenge free radicals and reactive oxygen molecules, and therefore helps in stabilizing the copper nanoparticles for few minutes in open air. Dynamic light scattering (DLS) results showed that copper nanoparticles formed in the presence of (PVP) were narrower, along with the narrowing of size distribution as compared to those in the presence of other stabilizers. Evaluation of the irradiation process was conducted by UV–vis spectroscopy using model systems for copper particles obtained in a solvent and also when the solvent was substituted by acrylic monomer. Presence of stabilizers tends to increase the resistance of copper nanoparticles formed in acrylic monomer against oxidation in an open atmosphere.

Full Text:

PDF

References


Kobayashi, Y., Ishida, S., Ihara, K., Yasuda, Y., Morita, T., & Yamada, S. (2009). Synthesis of metallic copper nanoparticles coated with polypyrrole. Colloid and Polymer Science, 287(7), 877-880.

Kim, H. S., Dhage, S. R., Shim, D. E., & Hahn, H. T. (2009). Intense pulsed light sintering of copper nanoink for printed electronics. Applied Physics A: Materials Science & Processing, 97(4), 791-798.

Huang, Z., Cui, F., Kang, H., Chen, J., Zhang, X., & Xia, C. (2008). Highly dispersed silica-supported copper nanoparticles prepared by precipitation− gel method: a simple but efficient and stable catalyst for glycerol hydrogenolysis. Chemistry of Materials, 20(15), 5090-5099

Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., & Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21), 5255-5262.

Huang, H. H., Yan, F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., ... & Tang, S. H. (1997). Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir, 13(2), 172-175.

Wu, S. H., & Chen, D. H. (2004). Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of colloid and interface science, 273(1), 165-169.

Mott, D., Galkowski, J., Wang, L., Luo, J., & Zhong, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740-5745.

Giuffrida, S., Costanzo, L. L., Ventimiglia, G., & Bongiorno, C. (2008). Photochemical synthesis of copper nanoparticles incorporated in poly (vinyl pyrrolidone). Journal of Nanoparticle Research, 10(7), 1183-1192.

Magdassi, S., Grouchko, M., & Kamyshny, A. (2010). Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 3(9), 4626-4638.

Tauran, Y., Brioude, A., Coleman, A. W., Rhimi, M., & Kim, B. (2013). Molecular recognition by gold, silver and copper nanoparticles. World journal of biological chemistry, 4(3), 35.

Liz-Marzán, L. M., Giersig, M., & Mulvaney, P. (1996). Synthesis of nanosized gold− silica core− shell particles. Langmuir, 12(18), 4329-4335.

Kobayashi, Y., Correa-Duarte, M. A., & Liz-Marzán, L. M. (2001). Sol− gel processing of silica-coated gold nanoparticles. Langmuir, 17(20), 6375-6379.

Kobayashi, Y., & Sakuraba, T. (2008). Silica-coating of metallic copper nanoparticles in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1), 756-759.

Ang, T. P., Wee, T. S. A., & Chin, W. S. (2004). Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. The Journal of Physical Chemistry B, 108(30), 11001-11010.

Lisiecki, I., Billoudet, F., & Pileni, M. P. (1996). Control of the shape and the size of copper metallic particles. The Journal of Physical Chemistry, 100(10), 4160-4166.

Kapoor, S., & Mukherjee, T. (2003). Photochemical formation of copper nanoparticles in poly (N-vinylpyrrolidone). Chemical physics letters, 370(1), 83-87.

Xiong, Y., Washio, I., Chen, J., Cai, H., Li, Z. Y., & Xia, Y. (2006). Poly (vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 22(20), 8563-8570.

Jeong, S., Woo, K., Kim, D., Lim, S., Kim, J. S., Shin, H., ... & Moon, J. (2008). Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink‐jet printing. Advanced Functional Materials, 18(5), 679-686.

Brege, J. J., Hamilton, C. E., Crouse, C. A., & Barron, A. R. (2009). Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano letters, 9(6), 2239-2242.

Park, B. K., Jeong, S., Kim, D., Moon, J., Lim, S., & Kim, J. S. (2007). Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of colloid and interface science, 311(2), 417-424.

Qi, L., Ma, J., & Shen, J. (1997). Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions. Journal of colloid and interface science, 186(2), 498-500.

Vitulli, G., Bernini, M., Bertozzi, S., Pitzalis, E., Salvadori, P., Coluccia, S., & Martra, G. (2002). Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chemistry of materials, 14(3), 1183-1186.

Raja, M. (2008). Production of copper nanoparticles by electrochemical process. Powder Metallurgy and Metal Ceramics. 47(7), 402–405

Itakura, T., Torigoe, K., & Esumi, K. (1995). Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir, 11(10), 4129-4134.

Condorelli, G. G., Costanzo, L. L., Fragalà, I. L., Giuffrida, S., & Ventimiglia, G. (2003). A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films. Journal of Materials Chemistry, 13(10), 2409-2411.

Zhu, X., Wang, B., Shi, F., & Nie, J. (2012). Direct, rapid, facile photochemical method for preparing copper nanoparticles and copper patterns. Langmuir, 28(40), 14461-14469.

Karadag, A., Yilmaz, V. T., & Thoene, C. (2001). Di-and triethanolamine complexes of Co (II), Ni (II), Cu (II) and Zn (II) with thiocyanate: synthesis, spectral and thermal studies. Crystal structure of dimeric Cu (II) complex with deprotonated diethanolamine,[Cu 2 (μ-dea) 2 (NCS) 2]. Polyhedron, 20(7), 635-641.

Sun, Y., Mayers, B., Herricks, T., & Xia, Y. (2003). Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano letters, 3(7), 955-960.

Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1), 015009.

Lisiecki, I., & Pileni, M. P. (1993). Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 115(10), 3887-3896.

Nazar, R., Ronchetti, S., Roppolo, I., Sangermano, M., & Bongiovanni, R. M. (2015). In situ synthesis of polymer embedded silver nanoparticles via photopolymerization. Macromolecular Materials and Engineering, 300(2), 226-233.

Priola, A., Gozzelino, G., Ferrero, F., & Malucelli, G. (1993). Properties of polymeric films obtained from uv cured poly (ethylene glycol) diacrylates. Polymer, 34(17), 3653-3657.

Halin, D. S. C., Talib, I. A., Daud, A. R., & Abd Hamid, M. A. (2012). Cuprous Oxide Thin Films for a Photoelectrochemical Cell of ITO/Cu2O/PVC-LiClO4/ Graphite. In Advanced Materials Research (Vol. 501, pp. 247-251). Trans Tech Publications.






Copyright (c) 2017 Pakistan Journal of Engineering and Applied Sciences

Powered By KICS