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Abstract 

Many boundary value problems that arise in real life situation defy analytical solutions; hence 

numerical techniques are the best source for finding the solution of such equations. In this study Finite 

difference Method (FDM) and Fourth Order Compact Method (FOCM) are presented for the 

solutions of well known one dimensional Inhomogeneous Telegraph equation and then its validity and 

applicability is checked through applications. The results obtained are compared with the exact 

solutions for these applications. We used Fortran 90 for the calculations of the numerical results and 

Mat lab for the graphical comparison.. 
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1. Introduction 

A general 4th Order differencing scheme 

proposed by H.O. Kreiss of Uppsala University is 

developed and tested to three viscous problems to 

validate the correctness and applicability of the 

method. The method is a typical since only three 

nodes are required to attain the preferred 4th order 

precision. This is proficient by a differencing 

procedure, which considers the function and all 

required derivatives as unknowns. The associations 

for these derivatives give up simple tridiagonal 

equations, which can be evaluated effortlessly. In 

(ORSZAG; 1974) a compact formula was 

mentioned. This method was used in that style by 

Ciment and Leventhal (1978) for hyperbolic 

problems. 

Consider the 2nd order 1D linear hyperbolic 

equation 

𝛼
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
+ 𝛽

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
+ 𝛾𝑢(𝑥, 𝑡) =

                               𝑐2  
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 +

 𝑝(𝑥, 𝑡)                                                                             (1)  

with the following initial conditions 

 𝑢(𝑥, 0) =  𝑓(𝑥)                                         (2) 

             
𝜕𝑢(𝑥,𝑡 )

𝜕𝑡
= 𝑔(𝑥)                                           (3) 

and with the boundary conditions 

           𝑢(0, 𝑡) = 0                                                 (4) 

   𝑢(𝑙, 𝑡) = 0            (5) 

𝑓𝑜𝑟     0 ≤ 𝑥 ≤  𝑙  , 𝑡 > 0 

Eq. (1) is referred to as the 2nd order Telegraph 

Equation with constant coefficients.  In eq. (1),  𝑥   

is distance,   𝑡  is time and 𝛼, 𝛽, 𝛾, 𝑐2 are non 

negative integers. 

 

2. Finite Difference Scheme  

To set up the finite difference scheme for eq. 

(1), select an integer 𝑚 and the values of 𝑡  from  0 

to ∞ then the mesh points (𝑥𝑖 , 𝑡𝑛) are  

       𝑥𝑖 = 𝑖 ∆ 𝑥 = 𝑖ℎ                     for 𝑖 = 0,1,2,3,…𝑚 

     𝑡𝑛 = 𝑛 ∆ 𝑡 = 𝑛𝑘                      for 𝑛 = 0,1,2,3,… 

At any interior mesh points  (𝑥𝑖 , 𝑡𝑛), then the 

Hyperbolic Homogeneous Telegraph eq. (1) 

becomes 𝛼
𝜕2𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝑡2 + 𝛽
𝜕𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝑡
+ 𝛾𝑢(𝑥𝑖 , 𝑡𝑛) = 

                     𝑐2  
𝜕2𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝑥2 + p(𝑥𝑖 , 𝑡𝑛)                     (6) 

The method is obtained using the central 

difference approximation for the 1st and 2nd order 

partial derivatives. 

 

So that (6) becomes 
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𝛼

(Δ𝑡)2
 (𝑢𝑖

𝑛+1 − 2𝑢𝑖
𝑛 + 𝑢𝑖

𝑛−1) − 
𝛼(Δ𝑡)2

12
 
𝜕4𝑢(𝑥𝑖 , 𝜇𝑛)

𝜕𝑡4

+ 
𝛽

2 (Δ𝑡) 
 (𝑢𝑖

𝑛+1 − 𝑢𝑖
𝑛−1)

− 
𝛽(Δ𝑡)2

6
 
𝜕3𝑢(𝑥𝑖, 𝜇𝑛)

𝜕𝑡3
+ 𝛾𝑢𝑖

𝑛 

= 
𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 )

− 
𝑐2(Δ𝑥)2

12
 
𝜕4𝑢(𝜉𝑖 , 𝑡𝑛)

𝜕𝑥4
  

where 𝜉𝑖 = (𝑥𝑖 , 𝑥𝑖+1) 

Neglecting the truncation error leads to the 

difference equation. 

 
𝛼

(Δ𝑡)2
 (𝑢𝑖

𝑛+1 − 2𝑢𝑖
𝑛 + 𝑢𝑖

𝑛−1)

+
𝛽

2 (Δ𝑡) 
 (𝑢𝑖

𝑛+1 − 𝑢𝑖
𝑛−1) + 𝛾𝑢𝑖

𝑛

= 
𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 )  

𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) = (

𝛼

(Δ𝑡)2
+

𝛽

2 (Δ𝑡) 
) 𝑢𝑖

𝑛+1 +  

(𝛾 −
2𝛼

(Δ𝑡)2
+

2𝑐2

(Δ𝑥)2
 ) 𝑢𝑖

𝑛 + (
𝛼

(Δ𝑡)2
−

𝛽

2 (Δ𝑡) 
)𝑢𝑖

𝑛−1  

Taking  

(
𝛼

(Δ𝑡)2
+

𝛽

2 (Δ𝑡) 
) =  𝜆1. (𝛾 −

2𝛼

(Δ𝑡)2
+

2𝑐2

(Δ𝑥)2
 ) =  𝜆2. 

 and    (
𝛼

(Δ𝑡)2
−

𝛽

2 (Δ𝑡) 
) = 𝜆3 

So 

𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) + 𝑝𝑖

𝑛  

= 𝜆1 𝑢𝑖
𝑛+1 + 𝜆2𝑢𝑖

𝑛 + 𝜆3𝑢𝑖
𝑛−1 

𝜆1 𝑢𝑖
𝑛+1 =

𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) − 𝜆2𝑢𝑖

𝑛 − 𝜆3𝑢𝑖
𝑛−1

+ 𝑝𝑖
𝑛  

 𝑢𝑖
𝑛+1 =

𝑐2

𝜆1(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) − 

𝜆2

𝜆1
𝑢𝑖

𝑛 −
𝜆3

𝜆1
𝑢𝑖

𝑛−1

+
1

𝜆1
𝑝𝑖

𝑛  

By letting  
𝑐2

𝜆1(Δ𝑥)2
= Λ, 

−𝜆2

𝜆1
= Ψ , 

−𝜆3

𝜆1
= Φ and   

1

𝜆1
=

Ω 

So  

 𝑢𝑖
𝑛+1 = Λ (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) +  Ψ𝑢𝑖

𝑛 + Φ𝑢𝑖
𝑛−1 + Ω 𝑝𝑖

𝑛  

𝑢𝑖
𝑛+1 =  Ψ𝑢𝑖

𝑛 + Λ 𝑢𝑖+1
𝑛 + Λ 𝑢𝑖−1

𝑛 + Φ𝑢𝑖
𝑛−1 + Ω 𝑝𝑖

𝑛                              

                                                                              (7) 

This equation holds for each  𝑖 = 1,2,… , (𝑚 − 1).  

The boundary conditions give 

                   𝑢0
𝑛 = 𝑢𝑚

𝑛 = 0                                     (8) 

for each 𝑛 = 1,2,…. 

And the initial condition implies that  

                   𝑢𝑖
0 = 𝑓(𝑥𝑖)                                          (9) 

for 𝑖 = 1,2,… , (𝑚 − 1). 

Writing in matrix form for 𝑖 = 1,2,… , (𝑚 − 1),  we 

have 

 

[
 
 
 
 
𝑢1

𝑛+1

𝑢2
𝑛+1

⋮
⋮

𝑢𝑚−1
𝑛+1 ]

 
 
 
 

=

[
 
 
 
 

Ψ Λ 0 0
Λ Ψ Λ
0 Λ ⋱ ⋱    0

⋱ Ψ Λ
0 0    Λ Ψ]

 
 
 
 

[
 
 
 
 

𝑢1
𝑛

𝑢2
𝑛

⋮
⋮

𝑢𝑚−1
𝑛 ]

 
 
 
 

+

Φ

[
 
 
 
 
𝑢1

𝑛−1

𝑢2
𝑛−1

⋮
⋮

𝑢𝑚−1
𝑛−1 ]

 
 
 
 

+ Ω

[
 
 
 
 

𝑝1
𝑛

𝑝2
𝑛

⋮
⋮

𝑝𝑚−1
𝑛 ]

 
 
 
 

                                         (10) 

Equations (7) and (8) imply that the (𝑛 + 1)𝑡ℎ 

time steps requires values from the (𝑛)𝑡ℎ and 

(𝑛 − 1)𝑡ℎ time steps. This produces a insignificant 

preliminary difficulty since values of  𝑛 = 1 

which is needed, in equation (7) to compute 𝑢𝑖
2  

must be obtained from the initial value condition.  

                𝑢𝑡|𝑖
0 = 𝑔(𝑥𝑖),                      0 ≤ 𝑥 ≤ 𝑙 

A better approximation 𝑢𝑡|𝑖
0 can be obtained rather 

easily, particularly when the second derivative of  ′𝑓′ 
at ′𝑥𝑖 ′ can be determined. 

Consider the Taylor Series 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝑘 𝑢𝑡|𝑖
𝑛 +

𝑘2

2
 𝑢𝑡𝑡|𝑖

𝑛 + 
𝑘3

6
 𝑢𝑡𝑡𝑡|𝑖

𝑛

+
𝑘4

24
 𝑢𝑡𝑡𝑡𝑡|𝑖

𝑛 +
𝑘5

120
 𝑢𝑡𝑡𝑡𝑡𝑡|𝑖

𝑛 + ⋯ 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝑘 𝑢𝑡|𝑖
𝑛 +

𝑘2

2
 𝑢𝑡𝑡|𝑖

𝑛 + 
𝑘3

6
 𝑢𝑡𝑡𝑡|𝑖

𝑛 
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𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝑘
=  𝑢𝑡|𝑖

𝑛 +
𝑘

2
 𝑢𝑡𝑡|𝑖

𝑛 + 
𝑘2

6
 𝑢𝑡𝑡𝑡|𝑖

𝑛

+ 
𝑘3

6
 𝑢𝑖

(4)𝑛(𝑥𝑖 , 𝜇𝑛) 

For 𝑛 = 0, we have  

  
𝑢𝑖

1−𝑢𝑖
0

𝑘
=  𝑢𝑡|𝑖

0 +
𝑘

2
 𝑢𝑡𝑡|𝑖

0 +
𝑘2

6
 𝑢𝑡𝑡𝑡|𝑖

0 +

 
𝑘2

6
 𝑢𝑖

(4)0(𝑥𝑖 , 𝜇𝑛)       

                                                                            (11) 

for some  𝜇𝑛 in (0, 𝑡1) and suppose the inhomo-

geneous telegraph equation also holds on the 

original line. That is  

𝑢𝑡𝑡|𝑖
0 = 

𝑐2

𝛼
 𝑓′′(𝑥𝑖) −

𝛽

𝛼
𝑢𝑡|𝑖

0 −
𝛾

𝛼
𝑢𝑖

0 +
1

𝛼
𝑝𝑖

0 

and  

𝑢𝑡𝑡𝑡|𝑖
0 = 

𝑐2

𝛼
 𝑔′′(𝑥𝑖) −

𝛽

𝛼
𝑢𝑡𝑡|𝑖

0 −
𝛾

𝛼
𝑢𝑡|𝑖

0 +
1

𝛼
𝑝𝑡|𝑖

0 

Substituting this value in eq.(11), we get 

𝑢𝑖
1 − 𝑢𝑖

0

𝑘
=  𝑢𝑡|𝑖

0 +
𝑘

2
 (

𝑐2

𝛼
 𝑓′′(𝑥𝑖) −

𝛽

𝛼
𝑢𝑡|𝑖

0 −
𝛾

𝛼
𝑢𝑖

0

+
1

𝛼
𝑝𝑖

0)

+
𝑘2

6
 (

𝑐2

𝛼
 𝑔′′(𝑥𝑖) −

𝛽

𝛼
𝑢𝑡𝑡|𝑖

0

−
𝛾

𝛼
𝑢𝑡|𝑖

0 +
1

𝛼
𝑝𝑡|𝑖

0)

+ 
𝑘2

6
 𝑢𝑖

(4)0(𝑥𝑖 , 𝜇𝑛) 

but  

𝑢𝑡|𝑖
0 = 𝑔(𝑥𝑖) 

So on simplifying and substituting  

𝑓′′(𝑥𝑖) =
𝑓(𝑥𝑖+1) − 2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)

ℎ2
 

And  

𝑔′′(𝑥𝑖) =
𝑔(𝑥𝑖+1) − 2𝑔(𝑥𝑖) + 𝑔(𝑥𝑖−1)

ℎ2
 

𝑢𝑖
0 = 𝑓(𝑥𝑖) 

This is an approximation with local truncation error 

𝑂(𝑘4)  for each 𝑖 = 1,2,… ,𝑚 − 1. 

 𝑢𝑖
1 = (

𝑘2𝑐2

2𝛼ℎ2 −
𝛽𝑐2𝑘3

6𝛼2ℎ2) (𝑓(𝑥𝑖+1) + 𝑓(𝑥𝑖−1)) +

 ( 𝑘 −
𝛽𝑘2

2𝛼
+

𝛽2𝑘3

6𝛼2 −
𝛾𝑘3

6𝛼
−

𝑐2𝑘3

6𝛼ℎ2)𝑔(𝑥𝑖) +

(1 −
𝛾𝑘2

2𝛼
+

𝛽𝛾𝑘3

6𝛼2 −
𝑐2𝑘2

𝛼ℎ2 +
𝛽𝑐2𝑘3

3𝛼2ℎ2) 𝑓(𝑥𝑖) +

(
𝑘3𝑐2

6𝛼ℎ2) (𝑔(𝑥𝑖+1) + 𝑔(𝑥𝑖−1)) + (
𝑘2

2𝛼
−

𝛽𝑘3

6𝛼2) 𝑝𝑖
0 +

𝑘3

6𝛼
𝑝𝑡|𝑖

0        (12) 

for each 𝑖 = 1,2,… (𝑚 − 1). 

 

3. Compact Scheme for Inhomogeneous 

Telegraph Equation: 

To derive this method for the 2nd order linear 

hyperbolic telegraph eq. (1), with 𝛼 > 0, 𝛽 > 0, 𝛾 >
0, 𝑐2 > 0 , 𝑓(𝑥) and 𝑔(𝑥) are given functions. This 

Compact method approximates eq.(1) by two 

difference equations of 4th order using only three 

lattice points say 𝑥𝑖−1,  𝑥𝑖   and 𝑥𝑖+1. Let us denote 1st 

and 2nd derivatives of 𝑢(𝑥, 𝑡) with respect to ′𝑥′ by 

𝐹, 𝑆  respectively. 

                           𝑢𝑥(𝑥, 𝑡) = 𝐹             (13) 

                           𝑢𝑥𝑥(𝑥, 𝑡) =  𝑆 

We shall first develop a link between the values of 𝐹 

and  𝑢. Since  𝐹 = 𝑢𝑥, it is clear that 

𝑢𝑖+1
𝑛 = 𝑢𝑖−1

𝑛 + ∫ 𝐹(𝜉, 𝑙) 𝑑𝜉

𝑖+1

𝑖−1

 

Approximating this integral by Simpson’s Rule and 

reorganizing we get 

𝑢𝑖+1
𝑛 = 𝑢𝑖−1

𝑛 + 
ℎ

3
(𝐹𝑖−1

𝑛 + 4𝐹𝑖
𝑛 + 𝐹𝑖+1

𝑛 )

+
ℎ5

90
 
𝜕4𝐹(𝜉, 𝑙)

𝜕𝑥4
 

Thus to fourth order, we have 

 (𝐹𝑖−1
𝑛 + 4𝐹𝑖

𝑛 + 𝐹𝑖+1
𝑛 ) +

ℎ

3
(𝑢𝑖−1

𝑛 − 𝑢𝑖+1
𝑛 ) = 0  (14) 

So we have a relationship between 𝑢  and   𝐹. This is 

the 1st difference equation. 

To obtain the 2nd equation, we begin by evaluating 

(1) at the mid point  ′𝑖′. Then eq. (1) becomes 
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     𝛼𝑢𝑡𝑡|𝑖
𝑛 + 𝛽𝑢𝑡|𝑖

𝑛 + 𝛾𝑢|𝑖
𝑛 = 𝑐2𝑆|𝑖

𝑛 + 𝑝𝑖
𝑛   (15) 

We now need the term for  𝑆|𝑖
𝑛. If we articulate 

𝑢|𝑖+1
𝑛  and 𝑢|𝑖−1

𝑛  in Taylor series about the point 

(𝑖, 𝑛) and adding the result we get 

  𝑢𝑖+1
𝑛 + 𝑢𝑖−1

𝑛 = 2𝑢𝑖
𝑛 + ℎ2 𝑆|𝑖

𝑛 + 
ℎ4

12
𝑢𝑥𝑥𝑥𝑥|𝑖

𝑛 +

 
ℎ6

360
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛                                           (16) 

where we have replaced 𝑢𝑥𝑥 with 𝑆|𝑖
𝑛. If we carry 

out the same procedure for  𝐹  then we have  

 𝐹𝑖+1
𝑛 − 𝐹𝑖−1

𝑛 = 2 ℎ 𝑆|𝑖
𝑛 + 

ℎ3

3
𝑢𝑥𝑥𝑥|𝑖

𝑛 +

 
ℎ5

60
𝑢𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛     (17) 

We now eliminate  𝑢𝑥𝑥𝑥𝑥|𝑖
𝑛 from these two 

equations and after rearranging, we get the following 

expression for  𝑆|𝑖
𝑛, 𝑆|𝑖−1

𝑛   𝑎𝑛𝑑  𝑆|𝑖+1
𝑛    

 𝑆|𝑖
𝑛 =

2

ℎ2 (𝑢𝑖+1
𝑛 + 𝑢𝑖−1

𝑛 − 2𝑢𝑖
𝑛) −

1

2ℎ
(𝐹𝑖+1

𝑛 − 𝐹𝑖−1
𝑛 ) +

 
ℎ4

360
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛          

By a similar procedure we get the following 

expressions for 𝑆|𝑖−1
𝑛   and  𝑆|𝑖+1

𝑛 . 

 𝑆|𝑖−1
𝑛 =

1

2ℎ2 (7𝑢𝑖+1
𝑛 − 23𝑢𝑖−1

𝑛 + 16𝑢𝑖
𝑛) −

1

ℎ
(𝐹𝑖+1

𝑛 + 6𝐹𝑖−1
𝑛 + 8𝐹𝑖

𝑛) + 
ℎ4

90
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛       

And  

 𝑆|𝑖+1
𝑛 =

1

2ℎ2
(7𝑢𝑖−1

𝑛 − 23𝑢𝑖+1
𝑛 + 16𝑢𝑖

𝑛)

+
1

ℎ
(𝐹𝑖−1

𝑛 + 6𝐹𝑖+1
𝑛 + 8𝐹𝑖

𝑛)

+ 
ℎ4

90
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛 

We now surrogate the expression for 𝑆|𝑖
𝑛 into (15) 

and reorganize to get the following 2nd  difference 

equation of fourth order. 

𝛼𝑢𝑡𝑡|𝑖
𝑛 + 𝛽𝑢𝑡|𝑖

𝑛 =
2 𝑐2

ℎ2
(𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) −

(𝛾 +
4 𝑐2

ℎ2 )𝑢𝑖
𝑛 −

 𝑐2

2ℎ
(𝐹𝑖+1

𝑛 − 𝐹𝑖−1
𝑛 ) + 𝑝𝑖

𝑛   (18) 

We have now replaced (1) by two difference 

equations (14) and (18). Now we have to look at the 

boundaries. Let us first deem the left boundary 

condition i.e., at 𝑥 = 0 and denotes the points 𝑥 =
0, ℎ, 2ℎ  by 0,1,2. The 1st difference equation we 

obtain from the boundary condition is  

                        𝑢0
𝑛 = 0                                         (19) 

To obtain the 2nd equation, we begin with the 

differential equation at the point 0 and 1. 

 𝑐2𝑆|0
𝑛 + 𝑝0

𝑛 = 𝛼𝑢𝑡𝑡|0
𝑛 + 𝛽𝑢𝑡|0

𝑛 + 𝛾𝑢|0
𝑛     (20) 

  𝑐2𝑆|1
𝑛 + 𝑝1

𝑛 = 𝛼𝑢𝑡𝑡|1
𝑛 + 𝛽𝑢𝑡|1

𝑛 + 𝛾𝑢|1
𝑛  (21) 

From the above equations of 𝑆|𝑖
𝑛, 𝑆|𝑖−1

𝑛   𝑎𝑛𝑑  𝑆|𝑖+1
𝑛   

, we have the following expressions for 𝑆|0
𝑛 

and   𝑆|1
𝑛. 

 𝑆|0
𝑛 = 

1

2ℎ2
(−23𝑢0

𝑛 + 16𝑢1
𝑛 + 7𝑢2

𝑛) −
1

ℎ
(6𝐹0

𝑛 + 8𝐹1
𝑛 + 𝐹2

𝑛)    (22) 

𝑆|1
𝑛 = 

2

ℎ2
(𝑢0

𝑛 − 2𝑢1
𝑛 + 𝑢2

𝑛) −
1

2ℎ
(𝐹2

𝑛 − 𝐹0
𝑛)       (23) 

Finally we have from (14) 

(𝐹0
𝑛 + 4𝐹1

𝑛 + 𝐹2
𝑛) +

ℎ

3
(𝑢0

𝑛 − 𝑢2
𝑛) = 0                (24) 

So we have five equations (20) to (24). If we 

eliminate    𝑢2
𝑛,   𝑆|0

𝑛,   𝑆|1
𝑛 and 𝐹2

𝑛 from these five 

equations, we get the 2nd  difference equation, 

suitable  at 𝑥 = 0. 

(
12𝑐2

ℎ2 + 𝛾)𝑢0
𝑛 − (

12𝑐2

ℎ2 + 𝛾)𝑢1
𝑛 +

6𝑐2

ℎ
𝐹0

𝑛 +
6𝑐2

ℎ
𝐹1

𝑛 +

(𝑝1
𝑛 − 𝑝0

𝑛) = 𝛼(𝑢𝑡𝑡|1
𝑛 − 𝑢𝑡𝑡|0

𝑛) + 𝛽(𝑢𝑡|1
𝑛 − 𝑢𝑡|0

𝑛)     

                                                                             (25) 

Similarly we can originate the following difference 

equation for  𝑢 and   𝐹 at    𝑥 = 𝑚, i.e. at the right 

boundary point. 

                𝑢𝑚
𝑛 = 0                                               (26) 

(
12𝑐2

ℎ2 + 𝛾)𝑢𝑚−1
𝑛 − (

12𝑐2

ℎ2 + 𝛾)𝑢𝑚
𝑛 +

6𝑐2

ℎ
𝐹𝑚−1

𝑛 +

6𝑐2

ℎ
𝐹𝑚

𝑛 + (𝑝𝑚
𝑛 − 𝑝𝑚−1

𝑛 ) = 𝛼(𝑢𝑡𝑡|𝑚
𝑛 − 𝑢𝑡𝑡|𝑚−1

𝑛 ) +

𝛽(𝑢𝑡|𝑚
𝑛 − 𝑢𝑡|𝑚−1

𝑛 )                                              (27) 

Thus for ach point, we have two difference 

equations. If we write them all together, we have the 

following 4th  Order Compact Scheme for   𝑢𝑥𝑥. 

𝑢0
𝑛 = 0 

(
12𝑐2

ℎ2
+ 𝛾)𝑢0

𝑛 − (
12𝑐2

ℎ2
+ 𝛾)𝑢1

𝑛 +
6𝑐2

ℎ
𝐹0

𝑛

+
6𝑐2

ℎ
𝐹1

𝑛 + (𝑝1
𝑛 − 𝑝0

𝑛)

= 𝛼(𝑢𝑡𝑡|1
𝑛 − 𝑢𝑡𝑡|0

𝑛) + 𝛽(𝑢𝑡|1
𝑛

− 𝑢𝑡|0
𝑛) 
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2 𝑐2

ℎ2
(𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) − (𝛾 +

4 𝑐2

ℎ2
)𝑢𝑖

𝑛

−
 𝑐2

2ℎ
(𝐹𝑖+1

𝑛 − 𝐹𝑖−1
𝑛 ) + 𝑝𝑖

𝑛

= 𝛼𝑢𝑡𝑡|𝑖
𝑛 + 𝛽𝑢𝑡|𝑖

𝑛 

𝑢𝑚
𝑛 = 0 

(
12𝑐2

ℎ2
+ 𝛾) 𝑢𝑚−1

𝑛 − (
12𝑐2

ℎ2
+ 𝛾) 𝑢𝑚

𝑛 +
6𝑐2

ℎ
𝐹𝑚−1

𝑛

+
6𝑐2

ℎ
𝐹𝑚 

𝑛  + (𝑝𝑚
𝑛 − 𝑝𝑚−1

𝑛 )

= 𝛼(𝑢𝑡𝑡|𝑚
𝑛 − 𝑢𝑡𝑡|𝑚−1

𝑛 )
+ 𝛽(𝑢𝑡|𝑚

𝑛 − 𝑢𝑡|𝑚−1
𝑛 ) 

The superscript  𝑛 is used to denote the time grid 

lines. 

Difference scheme using compact scheme for 𝒖𝒙𝒙 

and central difference scheme for 𝒖𝒕𝒕 and 𝒖𝒕. 

                𝑢𝑡𝑡|𝑖
𝑛 = 

𝑢𝑖
𝑛+1−2𝑢𝑖

𝑛+𝑢𝑖
𝑛−1

𝑘2 + 𝑂(𝑘2) 

and 

𝑢𝑡|𝑖
𝑛 = 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛−1

2𝑘
+ 𝑂(𝑘2) 

We have from eqs. (19), (25), (24),(18), (26) and 

(27) as below: 

𝑢0
𝑛 = 0 

(
𝛼

𝑘2
+

𝛽

2𝑘
)𝑢1

𝑛+1 −
6𝑐2

ℎ
𝐹0

𝑛 −
6𝑐2

ℎ
𝐹1

𝑛

= (
2𝛼

𝑘2
−

12𝑐2

ℎ2
− 𝛾)𝑢1

𝑛

+ (
𝛽

2𝑘
−

𝛼

𝑘2
)𝑢1

𝑛−1 + (𝑝1
𝑛 − 𝑝0

𝑛) 

𝐹𝑖−1
𝑛 + 4𝐹𝑖

𝑛 + 𝐹𝑖+1
𝑛 =

ℎ

3
(𝑢𝑖+1

𝑛 − 𝑢𝑖−1
𝑛 ) 

(
𝛼

𝑘2
+

𝛽

2𝑘
)𝑢𝑖

𝑛+1 +
 𝑐2

2ℎ
𝐹𝑖+1

𝑛 −
 𝑐2

2ℎ
𝐹𝑖−1

𝑛

=
2𝑐2

ℎ2
(𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 )

+ (
2𝛼

𝑘2
−

4𝑐2

ℎ2
− 𝛾)𝑢𝑖

𝑛

+ (
𝛽

2𝑘
−

𝛼

𝑘2
)𝑢𝑖

𝑛−1 + 𝑝𝑖
𝑛 

𝑢𝑚
𝑛 = 0 

(
𝛼

𝑘2
+

𝛽

2𝑘
)𝑢𝑚−1

𝑛+1 +
6𝑐2

ℎ
𝐹𝑚−1

𝑛 +
6𝑐2

ℎ
𝐹𝑚

𝑛

= (
2𝛼

𝑘2
−

12𝑐2

ℎ2
− 𝛾)𝑢𝑚−1

𝑛

+ (
𝛽

2𝑘
−

𝛼

𝑘2
)𝑢𝑚−1

𝑛−1 + (𝑝𝑚−1
𝑛 − 𝑝𝑚

𝑛 ) 

Now for finding   𝑢𝑖
1  for the next time level, we 

use the initial condition 

𝑢𝑡|𝑖
0 = 𝑔(𝑥𝑖),                      0 ≤ 𝑥 ≤ 𝑙 

Which can be approximated into the form by using 

Taylor’s series and finite differences as given in 

eq.(12). The Fourth Order Scheme can be expressed 

in matrix form. 

4. Test Problem: 

Consider the inhomogeneous telegraph equation    

uxx + (1 + π2)e−t sin π x = utt + ut + u  in the 

interval 0 < 𝑥 < 1. The boundary conditions are  

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 

and the initial conditions are  

𝑢(𝑥, 0) = sin 𝜋𝑥 and 𝑢𝑡(𝑥, 0) = −sin𝜋𝑥,    0 ≤
𝑥 ≤ 1 

The Exact Solution is 𝑢(𝑥, 𝑡) =  𝑒−𝑡 sin 𝜋𝑥. 

Comparison of the Numerical Results of  

FDM and FOCM  

 

Table 1   Finite Difference Method at 𝑡 = 0.02 

ix  FDM Exact Error 

0.000000000 0.000000000 0.000000000 0.000000000 

0.100000000 0.302902976 0.302898048 0.000004928 

0.200000000 0.576155698 0.576146325 0.000009373 

0.300000000 0.793010285 0.792997385 0.000012900 

0.400000000 0.932239502 0.932224336 0.000015166 

0.500000000 0.980214619 0.980198673 0.000015946 

0.600000000 0.932239502 0.932224336 0.000015166 

0.700000000 0.793010285 0.792997385 0.000012900 

0.800000000 0.576155698 0.576146325 0.000009373 

0.900000000 0.302902976 0.302898048 0.000004928 

1.000000000 0.000000000 0.000000000 0.000000000 
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Table 2   Fourth Order Compact Method at 𝑡 = 0.02 

ix  FOCM Exact Error 

0.000000000 0.000000000 0.000000000 0.000000000 

0.100000000 0.302900797 0.302898048 0.000002749 

0.200000000 0.576150919 0.576146325 0.000004594 

0.300000000 0.793003836 0.792997385 0.000006451 

0.400000000 0.932231890 0.932224336 0.000007554 

0.500000000 0.980206625 0.980198673 0.000007952 

0.600000000 0.932231890 0.932224336 0.000007554 

0.700000000 0.793003836 0.792997385 0.000006451 

0.800000000 0.576150919 0.576146325 0.000004594 

0.900000000 0.302900797 0.302898048 0.000002749 

1.000000000 0.000000000 0.000000000 0.000000000 

 

 
Fig. 1  

5. Conclusion 

In this paper, numerical solutions of the one 

dimensional linear inhomogeneous telegraph 

equation are derived using Finite Difference Method 

and Fourth Order Compact Method. Fourth Order 

Compact Method is known to be a powerful device  

 

for solving functional equations. From the solutions 

of inhomogeneous telegraph equation, we note that 

the fourth order compact method with 𝑂(ℎ4, 𝑘4), 

which also uses only three nodes, gives better results 

than the usual second order method.  
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