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Abstract 

Many boundary value problems that come up in true life situations defy analytical solutions; so 

numerical techniques are the best source for finding the solution of such equations. In this paper, a 

compact method for inhomogeneous heat equation is developed. Comparison of the compact method 

with the second order scheme is also given. We obtain results both numerically and graphically. We 

used FORTRAN 90 for the calculations of the numerical results and MS office for the graphical 

comparison. 
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1. Introduction 

The compact method is a new difference 

approximation. It is the fourth order approximation 

using only three grid points; whereas standard fourth 

order centered difference approximation requires five 

points, so in this method we have a higher order 

approximation using fewer grid points. In (ORSZAG; 

1974) a compact formula was mentioned. This 

method was used in that manner by Ciment and 

Leventhal (1978) for hyperbolic problems. 

Let us take the second order one-dimensional 

linear equation 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝑐2  

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 + 𝑝(𝑥, 𝑡) (1) 

The initial condition is 

𝑢(𝑥, 0) =  𝑓(𝑥) (2) 

and with the boundary conditions 

𝑢(0, 𝑡) = 0 (3) 

𝑢(𝑙, 𝑡) = 0 (4) 

for     0 ≤ 𝑥 ≤  𝑙  , 𝑡 > 0 

Eq. (1) is referred to as the second order 

inhomogeneous heat equation with constant 

coefficients.  In eq. (1),  𝑥   is distance and  𝑡  is time, 

and    𝛽,   𝑐2 are non negative integers. 

2. Finite Difference Method  

To set up the finite difference scheme for eq. 

(1), select an integer 𝑚 and the values of 𝑡  from   to 

 then the mesh points (𝑥𝑖 , 𝑡𝑛) are 

       𝑥𝑖 = 𝑖 ∆ 𝑥 = 𝑖ℎ       for 𝑖 = 0,1,2,3,…𝑚 

 𝑡𝑛 = 𝑛 ∆ 𝑡 = 𝑛𝑘                  for 𝑛 = 0,1,2,3, 

At any interior mesh points (𝑥𝑖 , 𝑡𝑛), then the 

Inhomogeneous heat eq. (1) becomes 

𝛽
𝜕𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝑡
= 𝑐2  

𝜕2𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝑥2 + 𝑝(𝑥𝑖 , 𝑡𝑛) (5) 

The method is obtained using the central 

difference approximation for the 1st and 2nd order 

partial derivatives. 

So that eq. (5) becomes 

𝛽

2 (Δ𝑡) 
 (𝑢𝑖

𝑛+1 − 𝑢𝑖
𝑛−1) − 

𝛽(Δ𝑡)2

6
 
𝜕3𝑢(𝑥𝑖 , 𝜇𝑛)

𝜕𝑡3

= 
𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 )

− 
𝑐2(Δ𝑥)2

12
 
𝜕4𝑢(𝜉𝑖 , 𝑡𝑛)

𝜕𝑥4
+ 𝑝𝑖

𝑛  

where 𝜉𝑖 = (𝑥𝑖 , 𝑥𝑖+1) 

Neglecting the truncation error leads to the 

difference equation. 

 



Pak. J. Engg. & Appl. Sci. Vol.19, July, 2016 

 46 

𝛽

2 (Δ𝑡) 
 (𝑢𝑖

𝑛+1 − 𝑢𝑖
𝑛−1)

=  
𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 )

+ 𝑝𝑖
𝑛   

𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) + 𝑝𝑖

𝑛  

= (
𝛽

2 (Δ𝑡) 
) 𝑢𝑖

𝑛+1 + (
2𝑐2

(Δ𝑥)2
 ) 𝑢𝑖

𝑛

− (
𝛽

2 (Δ𝑡) 
)𝑢𝑖

𝑛−1  

Taking  

(
𝛽

2 (Δ𝑡) 
) =  𝜆1   and    (

2𝑐2

(Δ𝑥)2
 ) =  𝜆2.     

So 

 

𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) + 𝑝𝑖

𝑛  

= 𝜆1 𝑢𝑖
𝑛+1 + 𝜆2𝑢𝑖

𝑛 − 𝜆1𝑢𝑖
𝑛−1 

𝜆1 𝑢𝑖
𝑛+1 =

𝑐2

(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) − 𝜆2𝑢𝑖

𝑛 − 𝜆1𝑢𝑖
𝑛−1

+ 𝑝𝑖
𝑛  

 𝑢𝑖
𝑛+1 =

𝑐2

𝜆1(Δ𝑥)2
 (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) − 

𝜆2

𝜆1
𝑢𝑖

𝑛 − 𝑢𝑖
𝑛−1

+
1

𝜆1
𝑝𝑖

𝑛  

By letting  
𝑐2

𝜆1(Δ𝑥)2
= Λ,    

−𝜆2

𝜆1
= Ψ , and   

1

𝜆1
= Ω 

So  

 𝑢𝑖
𝑛+1 = Λ (𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) +  Ψ𝑢𝑖

𝑛 − 𝑢𝑖
𝑛−1 + Ω 𝑝𝑖

𝑛  
  𝑢𝑖

𝑛+1 =  Ψ𝑢𝑖
𝑛 + Λ 𝑢𝑖+1

𝑛 + Λ 𝑢𝑖−1
𝑛 − 𝑢𝑖

𝑛−1 + Ω 𝑝𝑖
𝑛 (6) 

This equation holds for each  𝑖 = 1,2,… , (𝑚 − 1).  
The boundary conditions give 

𝑢0
𝑛 = 𝑢𝑚

𝑛 = 0 (7) 

for each 𝑛 = 1,2,…. 

And the initial condition implies that 

𝑢𝑖
0 = 𝑓(𝑥𝑖)   (8) 

for 𝑖 = 1,2,… , (𝑚 − 1). 

Writing in matrix form for 𝑖 = 1,2,… , (𝑚 − 1),  
we have 

 

[
 
 
 
 
𝑢1

𝑛+1

𝑢2
𝑛+1

⋮
⋮

𝑢𝑚−1
𝑛+1 ]

 
 
 
 

=

[
 
 
 
 
Ψ Λ 0 0
Λ Ψ Λ
0 Λ ⋱ ⋱    0

⋱ Ψ Λ
0 0    Λ Ψ]

 
 
 
 

[
 
 
 
 

𝑢1
𝑛

𝑢2
𝑛

⋮
⋮

𝑢𝑚−1
𝑛 ]

 
 
 
 

−

[
 
 
 
 
𝑢1

𝑛−1

𝑢2
𝑛−1

⋮
⋮

𝑢𝑚−1
𝑛−1 ]

 
 
 
 

+

Ω

[
 
 
 
 

𝑝1
𝑛

𝑝2
𝑛

⋮
⋮

𝑝𝑚−1
𝑛 ]

 
 
 
 

 (9) 

Equations (6) and (7) imply that the (𝑛 + 1)𝑡ℎ 

time steps requires values from the (𝑛)𝑡ℎ and 

(𝑛 − 1)𝑡ℎ time steps. This produces a minor starting 

problem since values of  𝑛 = 1 which is needed, in 

equation (6) to compute 𝑢𝑖
2  must be obtained from 

the initial value condition. 

𝑢𝑡|𝑖
0 = 𝑔(𝑥𝑖),                      0 ≤ 𝑥 ≤ 𝑙 

A better approximation 𝑢𝑡|𝑖
0 can be obtained 

rather easily, particularly when the second derivative 

of  ′𝑓′ at ′𝑥𝑖′ can be determined. 

Consider the Taylor Series 

 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝑘 𝑢𝑡|𝑖
𝑛 +

𝑘2

2
 𝑢𝑡𝑡|𝑖

𝑛 + 
𝑘3

6
 𝑢𝑡𝑡𝑡|𝑖

𝑛

+
𝑘4

24
 𝑢𝑡𝑡𝑡𝑡|𝑖

𝑛 +
𝑘5

120
 𝑢𝑡𝑡𝑡𝑡𝑡|𝑖

𝑛 + ⋯ 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝑘
=  𝑢𝑡|𝑖

𝑛 +
𝑘

2
 𝑢𝑡𝑡|𝑖

𝑛 + 
𝑘2

6
 𝑢𝑖

(3)𝑛(𝑥𝑖 , 𝜇𝑛) 

For 𝑛 = 0, we have  

  
𝑢𝑖

1−𝑢𝑖
0

𝑘
=  𝑢𝑡|𝑖

0 +
𝑘

2
  𝑢𝑖

(2)0(𝑥𝑖 , 𝜇𝑛)                  (10) 

 

for some  𝜇𝑛 in (0, 𝑡1) and suppose the 

inhomogeneous heat equation also holds on the initial 

line. That is 

𝑢𝑡|𝑖
0 = 

𝑐2

𝛽
 𝑓′′(𝑥𝑖) +

1

𝛽
𝑝𝑖

0 

Substituting this value in eq.(10), we get 

𝑢𝑖
1 − 𝑢𝑖

0

𝑘
= ( 

𝑐2

𝛽
 𝑓′′(𝑥𝑖) +

1

𝛽
𝑝𝑖

0) + 
𝑘

2
 𝑢𝑖

(2)0(𝑥𝑖, 𝜇𝑛) 

So on simplifying we get  

 𝑢𝑖
1 =

𝑘𝑐2

𝛽
𝑓′′(𝑥𝑖) + 𝑢𝑖

0 +
𝑘

𝛽
𝑝𝑖

0  
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This is an approximation with local truncation 

error 𝑂(𝑘2)  for each 𝑖 = 1,2,… ,𝑚 − 1. 

Now from the difference equation 

 

𝑓′′(𝑥𝑖) =
𝑓(𝑥𝑖+1) − 2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)

ℎ2
 

 𝑢𝑖
1 =

𝑘𝑐2

𝛽ℎ2
(𝑓(𝑥𝑖+1) + 𝑓(𝑥𝑖−1)) + 𝑢𝑖

0 −
2𝑘𝑐2

𝛽ℎ2
𝑓(𝑥𝑖)

+
𝑘

𝛽
𝑝𝑖

0 

But      𝑢𝑖
0 = 𝑓(𝑥𝑖)   and letting 𝜆2 =

𝑐2

ℎ2 , we have  

 𝑢𝑖
1 =

𝑘 𝜆2

𝛽
(𝑓(𝑥𝑖+1) + 𝑓(𝑥𝑖−1)) + (1 −

2𝑘𝜆2

𝛽
) 𝑓(𝑥𝑖) +

𝑘

𝛽
𝑝𝑖

0                              (11) 

for each 𝑖 = 1,2,… (𝑚 − 1). 

3. Compact Scheme for 
Inhomogeneous Heat Equation 

To derive this method for the second order 

linear inhomogeneous heat eq. (1), with 𝑓(𝑥) and 

𝑔(𝑥) are given functions. This Compact method 

approximates eq. (1) by two difference equations of 

fourth order using only three grid points say 𝑥𝑖−1, 𝑥𝑖   

and  𝑥𝑖+1. Let us denote 1st  and 2nd  derivatives of 

𝑢(𝑥, 𝑡) w.r. to ′𝑥′ by 𝐹, 𝑆  respectively. 

𝑢𝑥(𝑥, 𝑡) = 𝐹 (12) 

𝑢𝑥𝑥(𝑥, 𝑡) =  𝑆 

We shall initially derive a liaison between the 

values of 𝐹 and  𝑢. Since   𝐹 = 𝑢𝑥, it is clear that 

𝑢𝑖+1
𝑛 = 𝑢𝑖−1

𝑛 + ∫ 𝐹(𝜉, 𝑙) 𝑑𝜉

𝑖+1

𝑖−1

 

Approximating this integral by Simpson’s Rule 

and after reorganize we get 

𝑢𝑖+1
𝑛 = 𝑢𝑖−1

𝑛 + 
ℎ

3
(𝐹𝑖−1

𝑛 + 4𝐹𝑖
𝑛 + 𝐹𝑖+1

𝑛 )

+
ℎ5

90
 
𝜕4𝐹(𝜉, 𝑙)

𝜕𝑥4
 

Thus to fourth order, we have 

(𝐹𝑖−1
𝑛 + 4𝐹𝑖

𝑛 + 𝐹𝑖+1
𝑛 ) +

3

ℎ
(𝑢𝑖−1

𝑛 − 𝑢𝑖+1
𝑛 ) = 0 (13) 

So we have a relationship between 𝑢  and   𝐹. 

This is the first difference equation. In turn to get the 

second equation, we begin by evaluating (1) at the 

mid point  ′𝑖′. Then eq. (1) becomes 

𝛽𝑢𝑡|𝑖
𝑛 = 𝑐2𝑆|𝑖

𝑛 + 𝑝𝑖
𝑛 (14) 

We at present want the expression for  𝑆|𝑖
𝑛. If we 

articulate 𝑢|𝑖+1
𝑛  and 𝑢|𝑖−1

𝑛  in Taylor series about the 

point (𝑖, 𝑛) and adding the result we get 

  𝑢𝑖+1
𝑛 + 𝑢𝑖−1

𝑛 = 2𝑢𝑖
𝑛 + ℎ2 𝑆|𝑖

𝑛 + 
ℎ4

12
𝑢𝑥𝑥𝑥𝑥|𝑖

𝑛 +

 
ℎ6

360
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛                                               (15) 

 

where we have replaced 𝑢𝑥𝑥 with 𝑆|𝑖
𝑛. If we carry out 

the same procedure for  𝐹  then we have 

 

𝐹𝑖+1
𝑛 − 𝐹𝑖−1

𝑛 = 2 ℎ 𝑆|𝑖
𝑛 + 

ℎ3

3
𝑢𝑥𝑥𝑥𝑥|𝑖

𝑛 +

 
ℎ5

60
𝑢𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛             (16) 

 

We now eliminate  𝑢𝑥𝑥𝑥𝑥|𝑖
𝑛 from these two 

equations and after rearranging, we get the following 

expression for  𝑆|𝑖
𝑛, 𝑆|𝑖−1

𝑛   𝑎𝑛𝑑  𝑆|𝑖+1
𝑛  . 

 𝑆|𝑖
𝑛 =

2

ℎ2
(𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 − 2𝑢𝑖

𝑛) −
1

2ℎ
(𝐹𝑖+1

𝑛 − 𝐹𝑖−1
𝑛 )

+ 
ℎ4

360
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛 

 𝑆|𝑖−1
𝑛 =

1

2ℎ2
(7𝑢𝑖+1

𝑛 − 23𝑢𝑖−1
𝑛 + 16𝑢𝑖

𝑛)

−
1

ℎ
(𝐹𝑖+1

𝑛 + 6𝐹𝑖−1
𝑛 + 8𝐹𝑖

𝑛)

+ 
ℎ4

90
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛 

And  

 𝑆|𝑖+1
𝑛 =

1

2ℎ2
(7𝑢𝑖−1

𝑛 − 23𝑢𝑖+1
𝑛 + 16𝑢𝑖

𝑛)

+
1

ℎ
(𝐹𝑖−1

𝑛 + 6𝐹𝑖+1
𝑛 + 8𝐹𝑖

𝑛)

+ 
ℎ4

90
𝑢𝑥𝑥𝑥𝑥𝑥𝑥(𝜉, 𝑙)|𝑖

𝑛 

We now substitute the expression for 𝑆|𝑖
𝑛 into 

(14) and rearrange to get the following second 

difference equation of fourth order. 

 𝛽𝑢𝑡|𝑖
𝑛 =

2 𝑐2

ℎ2
(𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) − (

4 𝑐2

ℎ2 )𝑢𝑖
𝑛 −

 𝑐2

2ℎ
(𝐹𝑖+1

𝑛 − 𝐹𝑖−1
𝑛 ) + 𝑝𝑖

𝑛                                           (17) 
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We have now replaced (1) by two difference 

equations (13) and (17). Now we have to look at the 

boundaries. Let us first deem the left boundary 

condition i.e., at 𝑥 = 0 and denote the points 𝑥 =

0, ℎ, 2ℎ  by 0,1,2. The first difference equation we 

obtain from the boundary condition is 

  𝑢0
𝑛 = 0 (18) 

In order to obtain the second equation, we begin 

with the differential equation at the point 0 and 1. 

           𝑐2𝑆|0
𝑛 + 𝑝0

𝑛 = 𝛽𝑢𝑡|0
𝑛                               (19) 

                  𝑐2𝑆|1
𝑛 + 𝑝1

𝑛 = 𝛽𝑢𝑡|1
𝑛                          (20) 

So for 𝑖 = 1, we have the following expressions for 

𝑆|0
𝑛 and   𝑆|1

𝑛. 

𝑆|0
𝑛 = 

1

2ℎ2
(−23𝑢0

𝑛 + 16𝑢1
𝑛 + 7𝑢2

𝑛) −
1

ℎ
(6𝐹0

𝑛 +

8𝐹1
𝑛 + 𝐹2

𝑛)    (21) 

 𝑆|1
𝑛 = 

2

ℎ2
(𝑢0

𝑛 − 2𝑢1
𝑛 + 𝑢2

𝑛) −
1

2ℎ
(𝐹2

𝑛 − 𝐹0
𝑛)  (22) 

Finally we have from (13) 

    (𝐹0
𝑛 + 4𝐹1

𝑛 + 𝐹2
𝑛) +

3

ℎ
(𝑢0

𝑛 − 𝑢2
𝑛) = 0 (23) 

So we have five equations (19) to (23). If we 

eliminate    𝑢2
𝑛,   𝑆|0

𝑛,   𝑆|1
𝑛 and 𝐹2

𝑛 from these five 

equations, we get the second difference equation, 

valid  at 𝑥 = 0. 

   (
12𝑐2

ℎ2 )𝑢0
𝑛 − (

12𝑐2

ℎ2 )𝑢1
𝑛 +

6𝑐2

ℎ
𝐹0

𝑛 +
6𝑐2

ℎ
𝐹1

𝑛 + (𝑝1
𝑛 −

𝑝0
𝑛) = 𝛽(𝑢𝑡|1

𝑛 − 𝑢𝑡|0
𝑛)                                      (24) 

In a parallel way, we can develop the following 

difference equation for  𝑢 and   𝐹 at 𝑥 = 𝑚, i.e. at the 

right boundary point. 

𝑢𝑚
𝑛 = 0 (25) 

 (
12𝑐2

ℎ2 )𝑢𝑚−1
𝑛 − (

12𝑐2

ℎ2 )𝑢𝑚
𝑛 +

6𝑐2

ℎ
𝐹𝑚−1

𝑛 +
6𝑐2

ℎ
𝐹𝑚

𝑛 +

(𝑝𝑚
𝑛 − 𝑝𝑚−1

𝑛 ) = 𝛽(𝑢𝑡|𝑚
𝑛 − 𝑢𝑡|𝑚−1

𝑛 ) (26) 

 

Thus for each point, we have two difference 

equations. If we write them all together, we have the 

following Fourth Order Compact Scheme for   𝑢𝑥𝑥. 

𝑢0
𝑛 = 0 

(
12𝑐2

ℎ2
)𝑢0

𝑛 − (
12𝑐2

ℎ2
)𝑢1

𝑛 +
6𝑐2

ℎ
𝐹0

𝑛 +
6𝑐2

ℎ
𝐹1

𝑛 + (𝑝1
𝑛

− 𝑝0
𝑛) = 𝛽(𝑢𝑡|1

𝑛 − 𝑢𝑡|0
𝑛) 

2 𝑐2

ℎ2
(𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) − (

4 𝑐2

ℎ2
)𝑢𝑖

𝑛 −
 𝑐2

2ℎ
(𝐹𝑖+1

𝑛 − 𝐹𝑖−1
𝑛 )

+ 𝑝𝑖
𝑛 = 𝛽𝑢𝑡|𝑖

𝑛 

𝑢𝑚
𝑛 = 0 

(
12𝑐2

ℎ2
)𝑢𝑚−1

𝑛 − (
12𝑐2

ℎ2
)𝑢𝑚

𝑛 +
6𝑐2

ℎ
𝐹𝑚−1

𝑛 +
6𝑐2

ℎ
𝐹𝑚 

𝑛  

+ (𝑝𝑚
𝑛 − 𝑝𝑚−1

𝑛 )
= 𝛽(𝑢𝑡|𝑚

𝑛 − 𝑢𝑡|𝑚−1
𝑛 ) 

 

The superscript  𝑛 is used to denote the time 

grid lines. 

4. Accuracy of the Scheme 

Next, we compare the accuracy of the method 

with the standard five point centered difference 

scheme of the fourth order. The relation between 𝐹 

and  𝑢   in this method is 

1

6
 𝐹𝑖−1 +

2

3
𝐹𝑖 +

1

6
𝐹𝑖+1 =

1

2ℎ
(𝑢𝑖+1 − 𝑢𝑖−1) 

 

and the relation between 𝑆  and 𝑢 in this method is  

 
1

12
𝑆𝑖−1 +

5

6
𝑆𝑖 +

1

12
𝑆𝑖−1 =

1

ℎ2
(𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1) 

 

The correctness of this scheme is simply obtained by 

Taylor expansions of the above equations. The 

consequential truncation error is  

 

𝐹𝑖 = 𝑢𝑖
′ − (

1

180
) ℎ4 𝑢(5)     and 

𝑆𝑖 = 𝑢𝑖
′′ − (

1

240
)ℎ4 𝑢(6) 

The usual five-point fourth order approximations for 

𝑢𝑥 and 𝑢𝑥𝑥 are 

 

𝐹𝑖 =
1

12ℎ
(−𝑢𝑖+2 + 8𝑢𝑖+1 − 8𝑢𝑖−1 + 𝑢𝑖−2)        and 

𝑆𝑖 =
1

12ℎ2
(−𝑢𝑖+2 + 16𝑢𝑖+1 − 30𝑢𝑖 + 16𝑢𝑖−1

− 𝑢𝑖−2) 

The truncation error here is  

 𝐹𝑖 = 𝑢𝑖
′ − (

1

30
) ℎ4 𝑢(5)     and 

𝑆𝑖 = 𝑢𝑖
′′ − (

1

90
)ℎ4 𝑢(6) 
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Even though the new scheme and the standard 

representation both represent fourth order accuracy, 

the compact method should generate slightly more 

correct results due to smaller coefficients of the 

truncation error terms. 

Difference scheme using compact scheme 

for 𝒖𝒙𝒙 and central difference scheme for 
𝒖𝒕. 

𝑢𝑡|𝑖
𝑛 = 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛−1

2𝑘
+ 𝑂(𝑘2) 

Then  

𝑢𝑡|𝑖
𝑛 − 𝑢𝑡|𝑖−1

𝑛 = 
𝑢𝑖

𝑛+1 − 𝑢𝑖
𝑛−1 − 𝑢𝑖−1

𝑛+1 + 𝑢𝑖−1
𝑛−1

2𝑘
 

Then by using the last results, we have from eqs. 

(18), (24), (23),(17), (25) and (26) as below: 

𝑢0
𝑛 = 0 

(
𝛽

2𝑘
)𝑢1

𝑛+1 −
6𝑐2

ℎ
𝐹0

𝑛 −
6𝑐2

ℎ
𝐹1

𝑛

= (−
12𝑐2

ℎ2
)𝑢1

𝑛 + (
𝛽

2𝑘
)𝑢1

𝑛−1 + (𝑝1
𝑛

− 𝑝0
𝑛) 

𝐹𝑖−1
𝑛 + 4𝐹𝑖

𝑛 + 𝐹𝑖+1
𝑛 =

3

ℎ
(𝑢𝑖+1

𝑛 − 𝑢𝑖−1
𝑛 ) 

(
𝛽

2𝑘
)𝑢𝑖

𝑛+1 +
 𝑐2

2ℎ
𝐹𝑖+1

𝑛 −
 𝑐2

2ℎ
𝐹𝑖−1

𝑛

=
2𝑐2

ℎ2
(𝑢𝑖+1

𝑛 + 𝑢𝑖−1
𝑛 ) + (−

4𝑐2

ℎ2
)𝑢𝑖

𝑛

+ (
𝛽

2𝑘
)𝑢𝑖

𝑛−1 + 𝑝𝑖
𝑛 

𝑢𝑚
𝑛 = 0 

(
𝛽

2𝑘
)𝑢𝑚−1

𝑛+1 +
6𝑐2

ℎ
𝐹𝑚−1

𝑛 +
6𝑐2

ℎ
𝐹𝑚

𝑛

= (−
12𝑐2

ℎ2
)𝑢𝑚−1

𝑛 + (
𝛽

2𝑘
)𝑢𝑚−1

𝑛−1

+ (𝑝𝑚−1
𝑛 − 𝑝𝑚

𝑛 ) 

Now for finding   𝑢𝑖
1  for the next time level. It 

can be approximated into the form by using Taylor’s 

series and finite differences as given in eq.(11). The 

Fourth Order Scheme can be expressed in matrix 

form. 

 

5. Test Problem 

Consider the inhomogeneous heat equation    

uxx + (π2 − 1)e−t sin π x = ut  in the interval  0 <

𝑥 < 1. The boundary conditions are 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 

and the initial conditions are  

𝑢(𝑥, 0) = sin 𝜋𝑥   ,    0 ≤ 𝑥 ≤ 1,    𝑡 > 0. 

The Exact Solution is  𝑢(𝑥, 𝑡) =  𝑒−𝑡 sin 𝜋𝑥. 

Comparison of the Numerical Results of  

FDM and FOCM  

 

Table 1 Finite Difference Method at 𝑡 = 0.02  

ix  FDM Exact Error 

0.000000000 0.000000000 0.000000000 0.000000000 
0.100000000 0.303892718 0.302898048 0.000994670 
0.200000000 0.578038301 0.576146324 0.001891977 
0.300000000 0.795601468 0.792997385 0.002604083 
0.400000000 0.935285617 0.932224336 0.003061281 
0.500000000 0.983417496 0.980198673 0.003218823 
0.600000000 0.935285617 0.932224336 0.003061281 
0.700000000 0.795601468 0.792997385 0.002604083 
0.800000000 0.578038301 0.576146324 0.001891977 
0.900000000 0.303892718 0.302898048 0.000994670 
1.000000000 0.000000000 0.000000000 0.000000000 

 

Table 2 Fourth Order Compact Method at  𝑡 =
0.02  

ix  FOCM Exact Error 

0.000000000 0.000000000 0.000000000 0.000000000 

0.100000000 0.302908939 0.302898048 0.000010891 

0.200000000 0.576039594 0.576146324 0.000106730 

0.300000000 0.792876389 0.792997385 0.000120996 

0.400000000 0.932075901 0.932224336 0.000148435 

0.500000000 0.980044480 0.980198673 0.000154193 

0.600000000 0.932075901 0.932224336 0.000148435 

0.700000000 0.792876389 0.792997385 0.000120996 

0.800000000 0.576039594 0.576146324 0.000106730 

0.900000000 0.302908939 0.302898048 0.000010891 

1.000000000 0.000000000 0.000000000 0.000000000 

 

For graph see Figure 1 
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Figure 1 

 

6. Conclusion 

In this paper, numerical solutions of the one 

dimensional linear inhomogeneous heat equation are 

derived using Finite Difference Method (FDM) and 

Fourth Order Compact Method (FOCM). Fourth 

Order Compact Method is known to be a powerful 

device for solving functional equations. From the 

solutions of inhomogeneous heat equation, we note 

that the fourth order compact method, which also 

uses only three nodes, gives better results than the 

usual second order method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. References 

[1] Orszag S. A. and M. ISRAELI,  Numerical 

Simulation of Viscous Incompressible Flows, 

Annual Review of Fluid Mechanics by Milton 

Van Dyke, Vol. 6, Annual Reviews Inc., Palo 

Alto, California, 1974. 

[2] Ciment M. Leventhal SH. A note on the operator 

compact implicit method for the wave equation. 

Math Comput. 1978; 32(1): 143-7. 

[3] Abdul Majid Wazwaz, Partial Differential 

Equations and Solitary Waves Theory, Higher 

Education Press, Beijing 2009. 

[4] Richard L. Burden, Numerical Analysis, 8th 

edition, Brooks Cole, 2004. 

[5] Ozair, Muhammad Ahmad, An Exploration of 

Compact Finite Difference Methods For the 

Numerical Solution of PDE, Ph.D. Thesis, 

University of Western Ontario, Canada, 1997. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

u
(x

,t
)

Exact

FOCM

FDM


