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Abstract 

In this paper at first Hybridization of Northern lapwing mating optimizer algorithm with Teaching-

learning-based optimization algorithm (HNLTL) is used for solving power loss lessening problem. 

Northern lapwing mating optimizer (NLM) algorithm is based on the breeding activities of the basal 

bird. Teaching-learning-based optimization (TLBO) algorithm is grounded on the teaching-learning 

action in lecture hall. In the instigation of the proposed hybridized algorithm, with large probability 

value, TLBO operative from side to side imposing exploration competence will increase the solution 

space. Consequently with minor probability value NLM operative will pursuit in local mode to get the 

premium solution. Secondly hybridization of Canis lupus dingo algorithm with Sine Cosine Algorithm 

(HCSC) is done for solving the problem algorithm. Canis lupus dingo algorithm (CLA) emulates the 

stalking activities of the Canis lupus. Stalking behavior technically replicated and it amplifies the 

acquaintance about the plausible locality of the prey. Sine Cosine Algorithm (SCA) based on the 

functions of Sine and Cosine - it stimulates crucial impulsive agent solutions which will swipe 

externally or innermost style   to extent the premium solution. Hybridization of procedures progresses 

the harmonizing of exploration and exploitation. Both HNLTL and HCSC applied separately and 

solved the problem effectively. Proposed HNLTL and HCSC are appraised in IEEE 30 bus system with 

power constancy.  Proposed HNLTL  and HCSC has been verified in standard IEEE 14, 30, 57,118 and 

300 bus test systems deprived of power constancy. Simulation results show the planned HNLTL and 

HCSC algorithms are condensed the power loss proficiently.  

Keywords:  optimal reactive power, transmission loss, northern lapwing, teaching, learning, 

canis lupus dingo, sine cosine  

1. Introduction 

Power loss lessening problem plays major 

role in protected and cost-effective operations of 

system.  Power loss lessening problem has been 

solved by variation of procedures [1-5]. 

Nonetheless abundant systematic complications 

are originated while solving the problem due to 

hodgepodge of restrictions. Evolutionary 

procedures [6-13] are applied to solve the 

problem, but the foremost delinquent is 

voluminous procedures are get jammed in local 

optimal solution and futile to balance the 

Exploration & Exploitation throughout the 

exploration of global solution. Deeb et al. [1] 

utilised revised linear programming approach. Sun 

et al [2] applied Newton approach. Estevam et al 

[3] applied non-linear branch-and-bound 

algorithm. Chen et al [4] used modified barrier 

method.  Dommel et al [5] did work in Optimal 

Power Flow Solutions.  Singh et al [6] did work on 

reliability analysis. Das et al [7] used Modified 

JAYA Algorithm. Singh et al [8] used particle 

swarm optimization. Wang et al [9] worked in 

wind farm. Sahli et al [10] used PSO-Tabu. 

Mouassa et al [11] used lion procedure. Mandal et 

al [12] applied quasi-oppositional. Khazali et al 

[13] applied harmony pursuit. Tran et al [14] 

applied fractal examination process. Polprasert et 

al [15] applied pseudo-gradient. Thanh et al [16] 

used Operative Metaheuristic Method. Mirjalili, 

[17] designed sine cosine algorithm for solving 

optimization problem. IEEE-test systems [18] give 

the system data. Ali Nasser Hussain et al [19] 

applied Modified Particle Swarm Optimization for 

solving the problem.  Surender Reddy [20] applied 

Cuckoo Search Algorithm. Reddy [21] used faster 

evolutionary algorithm. Dai et al [22] used Seeker 

optimization procedure for solving the problem. 

Subbaraj et al [22] used self-adaptive real coded 

Genetic procedure to solve the problem. Pandya et 

al [23] applied Particle swarm optimization to 
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solve the problem. In this paper, at first 

Hybridization of Northern lapwing mating 

optimizer algorithm with Teaching-learning-based 

optimization algorithm (HNLTL) has been applied 

to solve optimal reactive power problem. Northern 

lapwing mating optimizer (NLM) algorithm is 

based on the mating actions of the bird. Female 

bird genes possess the parthenogenetic and 

polyandrous. Male bird’s genes have 

monogamous, polygynous and promiscuous. 

Naturally with one female bird alone a male bird 

mates then it’s defined as Monogamy. Based on 

the teaching-learning activity in classroom 

Teaching-learning-based optimization (TLBO) 

algorithm is modeled. Teacher Phase and Learner 

Phase are the two prime activities in the TLBO 

algorithm. In HNLTL  Pc  is the probability in 

employing NLM tactic, and probability of  1 −
 Pc . randomi(0,1) .  When  randomi(0,1)  is 

superior than or equal to Pc , then NLM operator 

will execute. Or else TLBO approach will be 

engaged to engender new-fangled individual. 

Secondly in this paper hybridization of Canis 

lupus dingo algorithm with Sine Cosine Algorithm 

(HCSC) is done for solving optimal reactive 

power problem. Canis lupus dingo algorithm 

(CLA) imitates the hunting actions of the Canis 

lupus. By assuming α, β, δ knowledge about the 

probable location of the prey will be enhanced. 

Sine Cosine Algorithm (SCA) produces 

preliminary arbitrary agent solutions which will 

swing outwardly or inwardly towards the most 

excellent solution by using numerical model. In 

order to avoid to be trapped in local optima Canis 

lupus dingo algorithm hybridized with sine cosine 

algorithm (HCSC) through that alpha 

representative of the Canis lupus dingo is 

enhanced which based on sine cosine algorithm. 

Both HNLTL and HCSC applied separately and 

solved the problem effectively. Proposed HNLTL 

and HCSC are appraised in IEEE 30 bus system 

with power constancy.  Proposed HNLTL  and 

HCSC has been tested in standard IEEE 14, 30, 

57,118 and 300 bus test systems deprived of 

power constancy. Simulation results show the 

planned HNLTL and HCSC algorithms are 

abridged the power loss competently. 

2. Problem Formulation  

Objective function of the problem is 

mathematically defined in general mode by, 

Minimization F̃(x̅, y̅)                            (1) 

Subject to 

E(x̅, y̅) = 0                                  (2) 

I(x̅, y̅) = 0                             (3) 

Minimization of the Objective function is 

the key and it defined by “F”.  Both E and I 

indicate the control and dependent variables. “x” 

consist of control variables which are reactive 

power compensators (Qc), dynamic tap setting of 

transformers –dynamic (T), level of the voltage in 

the generation units (Vg). 

x = [VG1, . . , VGNg; QC1, . . , QCNc; T1, . . , TNT]  (4) 

“y” consist of dependent variables which 

has slack generator PGslack  , level of voltage on 

transmission lines VL  , generation units reactive 

power QG , apparent power SL . 

y = [
PGslack; VL1, . . , VLNLoad; QG1, . . , QGNg;

SL1, . . , SLNT
]   (5) 

The fitness function (F1)  is defined to 

reduce the power loss (MW) in the system is 

written as, 

F1 = PMin = Min [∑ Gm
NTL
m [Vi

2 + Vj
2 − 2 ∗

ViVjcosØij]] (6) 

Number of transmission line indicated by 

“NTL”, conductance of the transmission line 

between the ith and jth buses, phase angle between 

buses i and j is indicated by Øij. 

Minimization of Voltage deviation fitness 

function (F2) is given by, 

F2 = Min [∑ |VLk − VLk
desired|

2
+ ∑ |QGK −

Ng
i=1

NLB
i=1

QKG
Lim|

2
] (7) 

Load voltage in kth load bus is indicated by 

VLk , voltage desired at the kth load bus is denoted 

by VLk
desired  , reactive power generated at kth load 

bus generators is symbolized by QGK , then the 

reactive power limitation is given by QKG
Lim , then 

the number load and generating units are indicated 

by NLB and Ng. 

Then the voltage stability index (L-index) 

fitness function (OF3)is given by, 

F3 = Min LMax                         (8) 

LMax = Max[Lj]; j = 1;NLB                (9) 

{
Lj = 1 −∑ Fji

Vi

Vj

NPV
i=1

Fji = −[Y1]
1[Y2]

                     (10) 

LMax specify themaxvalue   

LMax = Max [1 − [Y1]
−1[Y2] ×

Vi

Vj
]              (11) 
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Then the equality constraints are  

0 = PGi − PDi − Vi∑ Vjj∈NB [Gijcos[Øi − Øj] +

Bijsin[Øi − Øj]]        (12) 

0 = QGi − QDi − Vi∑ Vjj∈NB [Gijsin[Øi −Øj] +

Bijcos[Øi − Øj]] (13) 

Where, nb is the number of buses, PG and 

QG are the real and reactive power of the 

generator, PD and QD are the real and reactive 

load of the generator, and Gij and Bij are the 

mutual conductance and susceptance between bus 

i and bus j. 

Inequality constraints  

    Pgslack
min ≤ Pgslack ≤ Pgslack

max                     (14) 

       Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng                 (15) 

   VLi
min ≤ VLi ≤ VLi

max , i ∈ NL               (16) 

    Ti
min ≤ Ti ≤ Ti

max , i ∈ NT                    (17) 

    Qc
min ≤ Qc ≤ QC

max , i ∈ NC                  (18) 

|SLi| ≤ SLi
max , i ∈ NTL                           (19) 

  VGi
min ≤ VGi ≤ VGi

max , i ∈ Ng             (20) 

Where, nc, ng and nt are numbers of the 

switchable reactive power sources, generators and 

transformers. The equality constraints are satisfied 

by running the power flow program. The active 

power generation (Pgi), generator terminal bus 

voltages (VGi) and transformer tap settings (tk) 

are the control variables and they are self-

restricted by the optimization algorithm. The 

active power generation at slack bus (Psl), load 

bus voltage (Vload) and reactive power generation 

(QGi) are the state variables and are restricted by 

adding a quadratic penalty term to the objective 

function. 

Then the multi objective fitness (MOF) 

function has been defined by, 

MOF = F1 + xiF2 + yF3 = F1 + [∑ xv[VLi −
NL
i=1

VLi
min]

2
+ ∑ xg[QGi − QGi

min]
2NG

i=1 ] + xfF3   (21) 

Where real power loss reduction fitness 

function (F1), Minimization of Voltage deviation 

fitness function (F2)  and voltage stability index 

(L-index) fitness function (F3) are added to 

construct the multi objective fitness (MOF) 

function 

VLi
min = {

VLi
max , VLi > VLi

max

VLi
min, VLi < VLi

min                     (22) 

QGi
min = {

QGi
max , QGi > QGi

max

QGi
min, QGi < QGi

min                 (23) 

The active power generation (Pgi), 

generator terminal bus voltages (Vgi) and 

transformer tap settings (tk) are the control 

variables and they are self-restricted by the 

optimization algorithm. The active power 

generation at slack bus (Psl), load bus voltage 

(Vload) and reactive power generation (Qgi) are 

the state variables and are restricted by adding a 

quadratic penalty term to the objective function. 

3. Hybridization of Northern 
lapwing mating Optimizer 
Algorithm with Teaching-
Learning-Based Optimization 
Algorithm  

Hybridization of Northern lapwing mating 

optimizer algorithm with Teaching-learning-based 

optimization algorithm (HNLTL) has been 

designed to solve the power loss lessening 

problem.   Northern lapwing mating optimizer 

(NLM) algorithm is based on the mating actions of 

the Northern lapwing bird.  Certainly chaste and 

Bigamy are infatuated by feminine Northern 

lapwing bird DNAs. Coupledom, Bigamy and 

myriad are obsessed by Masculine Northern 

lapwing bird DNAs. Once one feminine Northern 

lapwing bird breeding with male Northern lapwing 

bird at that juncture it is recognized as 

Coupledom. Exclusive Northern lapwing bird 

from chaste and Bigamy will choose a Northern 

lapwing bird female for breeding by probabilistic 

method. At that moment the innovative fledgling 

Northern lapwing are totalled by, 

BLBnew young = BLB + ω × R⃗⃗  × (BL
i − Bl)  (24) 

if R1 > mutation influence parameter  

BLBnew young (R) = LB(R) − r2 × (LB (R) −

UB (R))  (25) 

Bigamy Northern lapwing chose many 

feminine birds for breeding. At that juncture fresh 

young ones are calculated as follows, 

BLBnew = BLB + ω × R⃗⃗  × (∑ R⃗⃗ j
k
j=1 × (BLBi −

BLB))  (26) 

if R1 > mutation influence parameter  

BLBnew young (R) = LB(R) − r2 × (LB (R) −

UB (R))  (27) 

Every Northern lapwing female bird in 

probabilistic method will provide fledgling 
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Northern lapwing bird by means of certainly not 

the contribution of Northern lapwing male bird 

and it is through creating a minor transformation 

in her DNAs while it is  apomictic and it described 

as follows, 

for i = 1 ∶ E  

if R1 > mutation influence parameter                   

BLBnew young (i) = BLB(i) + SR × (r2 −

r3) × BLB(i)  (28) 

Start 

a. Initialize the variables  

b. Categorize the Northern lapwing birds 

c. Recognize the information  

of the bird species  

d. Exclude the vilest Northern lapwing and 

beget fresh young ones by employing 

chaotic order  

e. Create fresh Northern lapwing bird young 

ones  grounded on types  

f. BLBnew young = BLB + ω × R⃗⃗  × (BL
i −

Bl) 

g. if R1 > mutation influence parameter 

h. BLBnew young (R) = LB(R) −

r2 × (LB (R) − UB (R)) 

i. BLBnew = BLB + ω × R⃗⃗  ×

(∑ R⃗⃗ j
k
j=1 × (BLBi − BLB)) 

j. if R1 > mutation influence parameter  

a. BLBnew young (R) = LB(R) −

r2 × (LB (R) − UB (R)) 

b.  for i = 1 ∶ E  

c. if R1 > mutation influence parameter  

a. BLBnew young (i) = BLB(i) +

SR × (r2 − r3) × BLB(i) 

b. Implement changeover segment  

c. Once extreme  number of fitness appraisal 

encountered at that time complete the 

procedure  

d. Otherwise go to step d 

e. end  

Teaching-learning-based optimization 

(TLBO) algorithm is grounded on the training - 

education action in lecture hall [15]. Trainer 

Segment and Pupil Segment are the two principal 

actions in the procedure. 

In Trainer segment pupils absorb through 

the trainer and described as follows,  

TLBnew = TLBi + r × (TLBtrainer −
 TF × TLBmean)  (29) 

In Pupil Segment learner amplify his or her 

acquaintance by means of cluster deliberations 

{
 
 

 
 TLBnew = TLBi +  r × (TLBj − TLBi) 

, if f(TLBj) < f(TLBi)

ynew = yi +  r × (yi − yj) ,        

  otherwise

         (30) 

In Hybridization of Northern lapwing 

mating optimizer algorithm with Teaching-

learning-based optimization algorithm (HNLTL)  

Pc is the probability in engaging Northern lapwing 

mating optimizer (NLM) algorithm tactic, and 

probability of  1 − Pc . randomi(0,1) .  NLM 

operative will be implemented 

when randomi(0,1) is greater than or equal to Pc . 
Otherwise the TLBO method will be betrothed to 

produce fresh entity with exploration and 

exploitation is heightened competently. With 

enormous Pc rate TLBO operative possess virtuous 

exploration competence which will widen the 

solution space. At that moment with minor Pc  rate 

premium solution is attained through NLM 

operative while it pursuits in local method.  Fig a 

shows the Flow chart of Hybridized Northern 

lapwing mating optimizer algorithm with 

Teaching-learning-based optimization algorithm 

(HNLTL). 

Assortment Probability is defined as, 

Pc(t) = sin(exp(−3t T⁄ ))                     (31) 

a. Start 

b. Initialize the variables  

c. Primary population is created 

d. While (end creteria not satisfied)  

e. Categorize the Northern lapwing birds 

f. Dissolute Northern lapwing are eradicated  

g. Fresh Northern lapwing are created by 

chaotic order 

h. Calculate the Probability Pc   

i. Every Northern lapwing bird will be in 

the order of  BLBi 

j. if Ri(0,1) >  Pc   

k. Northern lapwing mating optimizer 

method is employed in the contemporary 

population 

l. BLBnew young = BLB + ω × R⃗⃗  × (BL
i −

Bl)                           
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m.   if R1 > mutation influence parameter                 

n. BLBnew young (R) = LB(R) −

r2 × (LB (R) − UB (R))                                                      

o. BLBnew = BLB + ω × R⃗⃗  ×

(∑ R⃗⃗ j
k
j=1 × (BLBi − BLB))                                                                    

p. if R1 > mutation influence parameter                  

q. BLBnew young (R) = LB(R) −

r2 × (LB (R) − UB (R))          

r.  for i = 1 ∶ E  

s. if R1 > mutation influence parameter                   

t. BLBnew young (i) = BLB(i) +

SR × (r2 − r3) × BLB(i)                                                                                                      

u. Otherwise 

v. Teaching-learning-based optimization 

method is practical in current population 

w. TLBnew = TLBi + r × (TLBtrainer −
 TF × TLBmean)  

x. 

{
 
 

 
 TLBnew = TLBi +  r ×

(TLBj − TLBi) , if f(TLBj) < f(TLBi)

ynew = yi +  r × (yi − yj) ,        

  otherwise

  

y. Pc(t) = sin(exp(−3t T⁄ ))  

z. End If 

aa. End For 

bb. Evaluate and revolutionize the new-

fangled young Northern lapwing 

cc. End while 

dd. End 

ee. Output the premium solution 

ff. End 

4. Hybridization of Canis lupus 
dingo algorithm with Sine 
Cosine Algorithm  

Canis lupus dingo algorithm is hybridized 

with sine cosine algorithm (HCSC) for the power 

loss lessening problem.  Canis lupus dingo 

algorithm (CLA) imitates the hunting actions of 

Canis lupus dingo. Canis lupus dingo ringing 

performance of every representative of the troop is 

calculated as follows,  

HCA ̅̅ ̅̅ ̅̅ =  |U̅O̅p(t) − O̅(t)|                       (32) 

O̅(t + 1) = X̅p(t) − Q⃗⃗  ∙  HCA⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                     (33) 

Q⃗⃗ = 2e⃗ . r1 − e⃗                         (34) 

U⃗⃗ = 2. r2                            (35) 

e⃗ = 2 − 2t tmax⁄                       (36) 

Stalking behavior systematically replicated 

by presumptuous that α, β, δ have heightened 

acquaintance about the plausible position of the 

victim. 

HCAα⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |U1⃗⃗ ⃗⃗ , Oα⃗⃗⃗⃗  ⃗ − O⃗⃗ |                      (37) 

HCAβ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |U2⃗⃗ ⃗⃗  , Oβ⃗⃗ ⃗⃗  − O⃗⃗ |                      (38) 

HCAγ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |U3⃗⃗ ⃗⃗  , Oδ⃗⃗ ⃗⃗  − O⃗⃗ |                      (39) 

Oα⃗⃗⃗⃗  ⃗ -  Leading best search agent  

Oβ⃗⃗ ⃗⃗    -  Succeeding best search agent 

Oδ⃗⃗ ⃗⃗    -  Third search agent 

HCAα⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ specify the Leading best search agent 

stalking behaviour 

HCAβ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  specify the Succeeding best search agent 

stalking behaviour 

HCAγ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  specify the Third search agent stalking 

behaviour 

e⃗ = 2 − 1 ∗ (
2

max iter
)                         (40) 

HCAα⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |U1⃗⃗ ⃗⃗ , Oα⃗⃗⃗⃗  ⃗ − O⃗⃗ |                          (41) 

HCAβ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |U2⃗⃗ ⃗⃗  , Oβ⃗⃗ ⃗⃗  − O⃗⃗ |                          (42) 

HCAγ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |U3⃗⃗ ⃗⃗  , Oδ⃗⃗ ⃗⃗  − O⃗⃗ |                          (43) 

Oα⃗⃗⃗⃗  ⃗  -  Leading best search agent  

Oβ⃗⃗ ⃗⃗    -  Succeeding best search agent 

Oδ⃗⃗ ⃗⃗    -  Third search agent 

O1⃗⃗ ⃗⃗  = Oα⃗⃗⃗⃗  ⃗ − Q1⃗⃗ ⃗⃗    . (HCAα⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                          (44) 

O2⃗⃗ ⃗⃗  = Oβ⃗⃗ ⃗⃗  − Q2⃗⃗ ⃗⃗    . (HCAβ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                          (45) 

O3⃗⃗ ⃗⃗  = Oδ⃗⃗ ⃗⃗  − Q3⃗⃗ ⃗⃗    . (HCAδ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                          (46) 

O̅(t + 1) =
O1⃗⃗ ⃗⃗  ⃗+O2⃗⃗⃗⃗  ⃗+O3⃗⃗⃗⃗  ⃗

3
                               (47) 

Oα⃗⃗⃗⃗  ⃗  -  Leading best search agent  

Oβ⃗⃗ ⃗⃗    -  Succeeding best search agent 

Oδ⃗⃗ ⃗⃗    -  Third search agent 

Penetrating and confronting of the victim is 

modeled scientifically by presumptuous “ e⃗ ” 

(arbitrary) in the fissure of [2e,-2e]; while the e⃗ <
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1  Canis lupus dingo are enforced to round the 

victim and while e⃗ > 1   adherents of the Canis 

lupus dingo population has to diverge from the 

victim. In the procedure exploration is done 

through penetrating of the prey and exploitation is 

done through confronting the prey. 

In Sine Cosine Algorithm (SCA) maiden 

arbitrary agent solutions will swipe externally or 

interior way on the way to the premium solution 

by means of numerical archetypal which grounded 

on sine and cosine functions. 

Z⃗ i
t+1 = Z⃗ i

t + R1 × sin(R2) × |R3 × Ii
t − Z⃗ i

t|    (48) 

Z⃗ i
t+1 = Z⃗ i

t + R1 × cos(R2) × |R3 × Ii
t − Z⃗ i

t|   (49) 

Z⃗ i
t+1 =

{
Z⃗ i
t + R1 × sin(R2) × |R3 × Ii

t − Z⃗ i
t|    R4 < 0.5

Z⃗ i
t + R1 × cos(R2) × |R3 × Ii

t − Z⃗ i
t|  R4   ≥ 0.5

          (50) 

In order to evade to be stuck in local optima 

Canis lupus dingo algorithm mongrelized with 

sine cosine algorithm (HCSC) alpha representative 

of the Canis lupus dingo is boosted by sine cosine 

algorithm.   Through this exploration and 

exploitation is poised and upgraded.  Fig b shows 

Flow chart of Hybridized Canis lupus dingo 

algorithm with Sine Cosine Algorithm.  

Convergence precision is improved by smearing 

position streamline and to balance the exploration 

and the exploitation technique of the proposed 

algorithm. Over this the rationalized equation is 

described as follows, 

HCA⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
α = {

R ( ) × sin(R( )) × |U1⃗⃗ ⃗⃗  , Oα⃗⃗⃗⃗  ⃗ − O⃗⃗ |R( ) < 0.5

R( ) × cos(R( )) × |U1⃗⃗ ⃗⃗  , Oα⃗⃗⃗⃗  ⃗ − O⃗⃗ |R( ) ≥ 0.5
 (51) 

O1⃗⃗ ⃗⃗  = Oα⃗⃗⃗⃗  ⃗ − Q1⃗⃗ ⃗⃗    . (HCAα⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                       (52) 

a. Start   

b. Initialization of population  

c. Set the parameters  

d. Oα⃗⃗⃗⃗  ⃗ -  Leading best search agent  

e. Oβ⃗⃗ ⃗⃗    -  Succeeding best search agent 

f. Oδ⃗⃗ ⃗⃗    -  Third search agent 

g. While (t< max iter number)  

h. Location of the contemporary search 

agent rationalized  

i. O̅(t + 1) =
O1⃗⃗⃗⃗  ⃗+O2⃗⃗⃗⃗  ⃗+O3⃗⃗⃗⃗  ⃗

3
  

j. End for  

k. Refurbishment of standards  

l. Q⃗⃗ = 2e⃗ . r1 − e⃗   

m. U⃗⃗ = 2. r2  

n. e⃗ = 2 − 2t tmax⁄   

o. Exploration agent’s fitness rate is 

calculated  

p. Modernize the values  

q. O1⃗⃗ ⃗⃗  = Oα⃗⃗⃗⃗  ⃗ − Q1⃗⃗ ⃗⃗    . (HCAα⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

r. O2⃗⃗ ⃗⃗  = Oβ⃗⃗ ⃗⃗  − Q2⃗⃗ ⃗⃗    . (HCAβ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

s. O3⃗⃗ ⃗⃗  = Oδ⃗⃗ ⃗⃗  − Q3⃗⃗ ⃗⃗    . (HCAδ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

t. If R( )  < 0.5 

u. R ( ) × sin(R( )) × |U1⃗⃗ ⃗⃗ , Oα⃗⃗⃗⃗  ⃗ − O⃗⃗ | 

R( )  < 0.5  

v. Otherwise 

w.  R( ) × cos(R( )) × |U1⃗⃗ ⃗⃗ , Oα⃗⃗⃗⃗  ⃗ − O⃗⃗ | 

 R( )  ≥ 0.5  

x. O1⃗⃗ ⃗⃗  = Oα⃗⃗⃗⃗  ⃗ − Q1⃗⃗ ⃗⃗    . (HCAα⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

y. End if  

z. End else 

aa. End while  

bb. Return the Oα⃗⃗⃗⃗  ⃗ 

cc. End  

5. Simulation Results  

Proposed HNLTL and HCSC are appraised 

substantiated in IEEE 30 bus system. Appraisal of 

loss has been done with PSO, modified PSO, 

improved PSO, comprehensive learning PSO, 

Adaptive genetic algorithm, Canonical genetic 

algorithm, enhanced genetic algorithm, Hybrid 

PSO-Tabu search (PSO-TS), Ant lion (ALO), 

quasi-oppositional teaching learning based 

(QOTBO), improved stochastic fractal search 

optimization algorithm (ISFS), harmony search 

(HS), improved pseudo-gradient search particle 

swarm optimization and cuckoo search algorithm. 

Power loss abridged proficiently and proportion of 

the power loss lessening has been enriched. 

Predominantly voltage stability augmentation 

accomplished with minimized voltage deviation.  

In Table 1 show the loss assessment, Table 2 

shows the voltage deviation evaluation and Table 

3 gives the L-index review.    Comparison done 

with BPSO-TS [10],TS[10],BPSO [10],ALO 

[11],QO-TLBO [12],TLBO [12],SGA [13],BPSO 

[13],HAS [13],S-FS [14],IS-FS [14] and SFS  [16] 

algorithms. Figs 1 to 3 shows the comparison of 

parameters. 

Table 1: Appraisal of power loss  

Technique  Power loss (MW) 

Regular PSO-TS [10] 4.5213 

Customary TS   [10] 4.6862 
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Basic PSO [10] 4.6862 

Standard ALO [11] 4.5900 

Basic QO-TLBO [12] 4.5594 

Original TLBO [12] 4.5629 

Standard  GA [13] 4.9408 

Basic PSO [13] 4.9239 

Hybrid -AS [13] 4.9059 

Regular FS [14] 4.5777 

Hybrid -ISFS [14] 4.5142 

Regular FS  [16] 4.5275 

HNLTL 4.4988 

HCSC 4.4982 

 

Fig. a: Flow chart of Hybridized Northern lapwing 

mating optimizer algorithm with Teaching-

learning-based optimization algorithm 

(HNLTL) 

 

Fig. b: Flow chart of Hybridized Canis lupus 

dingo algorithm with Sine Cosine 

Algorithm 

In the Fig. 1 comparison of real power loss 

done with other reported algorithms; Regular 

PSO-TS [10], Customary TS [10], Basic PSO [10], 

Standard ALO [11], Basic QO-TLBO [12], 

Original TLBO [12], Standard GA [13], Basic 

PSO [13], Hybrid -AS [13], Regular FS [14], 

Hybrid -ISFS [14] and Regular FS [16].  

In Fig. 2 comparison of voltage deviation 

done with Standard PSO-TVIW [15], Basic PSO-

TVAC [15], Hybrid -PSOTVAC [15], Regular 

PSO-CF [15], Hybrid -PGPSO [15], Basic SWT-

PSO [15], Basic PGSWT-PSO [15], Hybrid-

MPGPSO [15], Hybrid -QOTLBO [12], Original 
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TLBO [12], Regular FS [14], Enhanced SFS [14] 

and Customary FS [16]. 

 

 

Fig. 1: Power loss comparison (X axis- Methods, Y-axis – Value of Power loss in MW) 

 

Fig. 2: Comparison of Voltage deviation (X axis- Methods, Y-axis –value of Voltage deviation in PU)

Table 2: Evaluation of voltage deviation 

Technique  Voltage 

deviation (PU) 

Standard PSO-TVIW [15] 0.1038 

Basic PSO-TVAC  [15] 0.2064 

Hybrid -PSOTVAC [15] 0.1354 

Regular PSO-CF   [15] 0.1287 

Hybrid -PGPSO  [15] 0.1202 

Basic SWT-PSO  [15] 0.1614 

Basic PGSWT-PSO  [15] 0.1539 

Hybrid -MPGPSO  [15] 0.0892 

Hybrid -QOTLBO     [12] 0.0856 

Original TLBO       [12] 0.0913 

Regular FS    [14] 0.1220 

Enhanced SFS  [14] 0.0890 

Customary FS [16] 0.0877 

HNLTL 0.0821 

HCSC 0.0819 

 

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5
R

e
gu

la
r 

P
SO

-T
S

C
u

st
o

m
ar

y 
TS

B
as

ic
 P

SO

St
an

d
ar

d
 A

LO

B
as

ic
 Q

O
-T

LB
O

O
ri

gi
n

al
 T

LB
O

St
an

d
ar

d
  G

A

B
as

ic
 P

SO

H
yb

ri
d

 -
A

S

R
e

gu
la

r 
FS

H
yb

ri
d

 -
IS

FS

R
e

gu
la

r 
FS

H
N

LT
L

H
C

SC

Power loss (MW)

Power loss (MW)

0

0.05

0.1

0.15

0.2

0.25

St
an

d
ar

d
 P

SO
-T

V
IW

B
as

ic
 P

SO
-T

V
A

C
H

yb
ri

d
 -

P
SO

TV
A

C
R

e
gu

la
r 

P
SO

-C
F

H
yb

ri
d

 -
P

G
P

SO
B

as
ic

 S
W

T-
P

SO
B

as
ic

 P
G

SW
T-

P
SO

H
yb

ri
d

 -
M

P
G

P
SO

H
yb

ri
d

 -
Q

O
TL

B
O

O
ri

gi
n

al
 T

LB
O

R
e

gu
la

r 
FS

En
h

an
ce

d
 S

FS

C
u

st
o

m
ar

y 
FS

H
N

LT
L

H
C

SC

Voltage deviation (PU)

Voltage deviation (PU)



Real Power Loss Reduction by Hybridization of Northern Lapwing Mating With Teaching-Learning-Based Optimization and 

Canis Lupus Dingo with Sine Cosine Algorithm 

42 

Table 3: Appraisal of VSI for IEEE 30 bus system  

Technique   L-index (PU) 

Original PSO-TVIW [15] 0.1258 

Hybrid -PSOTVAC  [15] 0.1499 

Basic PSO-TVAC [15] 0.1271 

Hybrid -BPSOCF   [15] 0.1261 

Basic PG-PSO  [15] 0.1264 

Hybrid -SWTPSO  [15] 0.1488 

Basic PGSWT-PSO  [15] 0.1394 

Hybrid -MPGPSO  [15] 0.1241 

Basic QO-TLBO     [12] 0.1191 

Regular TLBO       [12] 0.1180 

ALO [11] 0.1161 

Original ABC [11] 0.1161 

Basic GWO [11] 0.1242 

Standard BA [11] 0.1252 

Regular FS    [14] 0.1252 

Enhanced SFS  [14] 0.1245 

Customary FS [16] 0.1007 

HNLTL 0.1003 

HCSC 0.1001 

In Fig. 3 comparison of voltage stability 

done with Basic PG-PSO  [15], Hybrid -SWTPSO 

[15], Basic PGSWT-PSO  [15], Hybrid -MPGPSO 

[15], Basic QO-TLBO [12], Regular TLBO [12], 

ALO [11], Original ABC [11], Basic GWO [11], 

Standard BA [11], Regular FS [14], Enhanced SFS 

[14] and Customary FS [16]. 

At first in standard IEEE 14 bus system the 

validity of the Proposed HNLTL and HCSC has 

been tested, Table 4 shows comparison results. 

Figures 4 to 8 shows the comparison of power 

loss. 

 

 

Fig. 3: Comparison of voltage stability (L-index) (X axis- Methods, Y-axis –value of L index in PU)

Table 4:  Comparison of loss (IEEE −14 system) 

Parameters  Base case 

[19] 

MPSO [19] PSO [24] EP [22] SARGA [23] HNLTL HCSC 

Percentage of 

Reduction in 

Power Loss  

0  9.2  9.1  1.5  2.5 17.73 25.40 

Power loss in 

MW 

13.550  12.293  12.315  13.346  13.216 11.147 10.108 
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Fig. 4: Comparison of Power Loss (X axis- Methods, Y-axis – Value and percentage of reduction of Power 

loss (MW))

In Fig. 4 comparison of real power loss 

(IEEE 14 bus system) has been done with MPSO 

[19], PSO [24], EP [22] and SARGA [23]. 

Proposed HNLTL and HCSC reduced the power 

loss efficiently.  

Then the Proposed HNLTL and HCSC have 

been tested, in IEEE 30 Bus system. Comparison 

results are presented in Table 5. 

In Fig. 5 comparison of real power loss 

(IEEE 30 bus system) has been done with MPSO 

[19], PSO [24], EP [22] and SARGA [23]. 

Proposed HNLTL and HCSC reduced the power 

loss efficiently.  

Then the Proposed HNLTL and HCSC have 

been tested, in IEEE 57 Bus system [18]. Table 6 

shows the comparison results. 

Table 5: Comparison of results (IEEE −30 system) 

Parameters  Base case 

[19] 

MPSO 

[19] 

PSO [24] EP [22] SARGA [23] HNLTL HCSC 

Percentage of 

Reduction in 

Power Loss  

0  8.4  7.4  6.6  8.3 13.95 17.97 

Power loss in 

MW 

17.55  16.07  16.25  16.38  16.09  15.101 14.396 

 

Fig. 5: Real power loss comparison (X axis- Methods, Y-axis – Value and percentage of reduction of 

Power loss (MW))
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Table 6: Active power loss comparison (IEEE −57 system) 

Parameters  Base case 

[19] 

MPSO 

[19] 

PSO [24] CGA 

[23] 

AGA 

[23] 

HNLTL HCSC 

Percentage 

of Reduction 

in Power 

Loss  

0  15.4  14.1  9.2  11.6 22.92 24.38 

Power loss 

in MW 

27.8  23.51  23.86  25.24  24.56  21.428 21.020 

 

Fig. 6: Active power loss comparison (X axis- Methods, Y-axis – Value and percentage of reduction of 

Power loss (MW))

In Fig. 6 comparison of real power loss 

(IEEE 57 bus system) has been done with MPSO 

[19], PSO [24], CGA [23] and AGA [23]. 

Proposed HNLTL and HCSC reduced the power 

loss efficiently.  

Then the Proposed HNLTL and HCSC have 

been tested, in IEEE 118 Bus system. Comparison 

results are presented in Table 7. 

Table 7:  Comparison of results (IEEE −118 system) 

Parameter  Base 

case 

[19] 

MPSO [19] PSO 

[24] 

IPSO 

[22] 

CLPSO 

[22] 

HNLTL HCSC 

Percentage of 

Reduction in 

Power Loss  

0  11.7  10.1  0.6  1.3 13.29 13.95 

Power loss in MW 132.8  117.19  119.34  131.99  130.96 115.139 114.269 

 

Fig. 7: Comparison of real power loss (X axis- Methods, Y-axis – Value and Percentage of reduction of 

Power loss (MW)) 
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Table 8: Comparison of Real Power Loss  

Parameter   EGA [21]  EEA [21] CSA [20] HNLTL HCSC 

Power loss (MW) 646.2998 650.6027 635.8942 613.4199 612.0100 

 

 

Fig. 8: Comparison of Active power loss   (X axis- Methods, Y-axis – Value of Power loss in MW)

In Fig. 7 comparison of real power loss 

(IEEE 118 bus system) has been done with MPSO 

[19], PSO [24], IPSO [22] and CLPSO [22]. 

Proposed HNLTL and HCSC reduced the power 

loss efficiently. 

Then IEEE 300 bus system is used as test 

system to validate the performance of the 

Proposed HNLTL and HCSC. Table 8 shows the 

comparison of real power loss obtained after 

optimization.  

In Fig. 8 comparison of real power loss 

(IEEE 300 bus system) has been done with   EGA 

[21], EEA [21] and CSA [20]. Proposed HNLTL 

and HCSC reduced the power loss efficiently. 

6. Conclusion 

In this work Hybridization of Northern 

lapwing mating optimizer algorithm with 

Teaching-learning-based optimization algorithm 

(HNLTL) successfully solved the optimal reactive 

power problem. In the commencement of the 

projected hybridized algorithm, TLBO operator 

with commanding exploration capability with 

large Pc value enlarged the solution space. Then to 

get the most excellent solution NLM operator will 

search with small Pc  value in local mode. Both 

exploration and exploitation has been improved. In 

this work hybridization of Canis lupus dingo 

algorithm with Sine Cosine Algorithm (HCSC) 

successfully solved the optimal reactive power 

problem. Through the hybridization progress of 

alpha representative of the Canis lupus dingo has 

been enhanced based on sine cosine algorithm. 

Both exploration and exploitation has been 

maintained in balanced mode in the projected 

algorithm.  Proposed HNLTL and HCSC are 

appraised in IEEE 30 bus system with power 

constancy.  Proposed HNLTL  and HCSC has 

been tested in standard IEEE 14, 30, 57,118 and 

300 bus test systems deprived of power constancy. 

Simulation results show the planned HNLTL and 

HCSC algorithms are abridged the power loss 

competently. 

After hybridization the obtained real power 

loss (IEEE 30 Bus system) as follows 

1. With considering voltage stability (multi 

objective); HNLTL- 4.4988 (MW)  and 

HCSC-4.4982 (MW) 

2. Without considering voltage stability 

(single objective) ;  HNTL- 15.101(MW) 

and  HCSC -14.396 (MW) 

The work has been enhanced and real power 

loss reduction has been attained. Comparison has 

been done with other standard reported algorithms 
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