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Abstract 
 
Many languages provide support for describing composite and other user-defined types which in 
turn depend upon built-in types. A built-in or primitive type is typically composed of a data 
structure, a set of operations and a view or concrete external representation for that data 
structure. User-defined types differ from primitive types in that they are typically composed of a 
data structure and a set of operations only. This paper describes a view model which is an 
integral part of an object-oriented development language named POOL (Persistent Object-
Oriented Language). The language provides a facility for defining multiple and complex views of 
a user-defined type as an integral part of a type definition. These view definitions are used to 
enable values of user-defined types to be manipulated directly, for example, during marshalling 
and input/output operations. This paper also addresses the view inheritance problem associated 
with user-defined views, and also discusses a type inference strategy adopted for inferring types 
from values of user-defined types. 
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1. Introduction 
 
In Programming Languages, a built-in or primitive 
type is typically composed of a data structure, a set 
of operations and a view or concrete external 
representation for its data structure. The view or 
concrete external representation is built into the 
language processor. When values of built-in types 
are used, their concrete representation guarantees that 
the resulting value is syntactically correct and type 
inference for such values is relatively straight 
forward.  
 
Programming languages provide support for 
describing composite and other user-defined types 
which in turn depend upon built-in types.         
User-defined types differ from primitive types 
because they are typically composed of a data 
structure and a set of operations only, i.e., there is no 
view or concrete representation for a user-defined 
type and all input/output processes are performed in 
terms of built-in types. There is no general-purpose 
mechanism available in any language to define views 
or concrete representation of user-defined types. 
Such view mechanism can only be implemented via 
changes to the language processor which in turn 
often initiates other changes. An alternate solution is 
to use the external representation of a primitive type 
to generate a mapping to a user-defined type’s own 
external representation. However, this solution 

makes type inference more complicated and 
compromises the data hiding principle. 

  

POOL [6] is an object-oriented class-based language 
whose simple Pascal-like syntax, combined with 
static type-checking, provides support for the rapid 
construction of reliable reusable software. POOL 
provides an extension to its object-oriented,       
class-based type system which supports a general 
purpose mechanism for describing concrete 
representations for values of user-defined types. 

 
There are a number of view mechanisms in common 
use but these are typically limited to the context of 
Object-Oriented DataBases (OODB) [1, 2, 3, 4]. 
However, little work has been done regarding the 
implementation or realization of object-oriented 
views [2, 5], i.e., there are no widely accepted 
concrete representation or view mechanisms in the 
context of object-oriented languages. 
 

 
2. View Extension 

 
In POOL’s type system, a type specifies the structure 
of a set of values together with the valid operations, 
and one or more views that may be applied to those 
values. A view is an integral part of a type definition 
and can be used directly to describe concrete 
representations for values of a user defined type for 
marshalling and input / output  operations  and direct 
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manipulation of values of a user-defined type [7].  
 

Further, every user defined type has at least one view 
of the type’s name. This view is termed as the default 
view and is used to process those values of          
user-defined types where a view name is not 
explicitly specified, e.g., values of user-defined types 
in program text. A type inherits all the views of its 
super-type and these inherited views can be extended 
and modified in sub-types. 
 
A view differs from an operation in that a view can 
be used within an expression for direct object-value 
manipulation, marshalling, assignment or processing, 
i.e., such processing cannot be done by a method 
(operation) within an expression. A view is 
constructed using the following three primitives: 
 
• open (d :  direction) indicates the 

start of a new view whose nested sub-views are 
laid out along direction d which, in turn, can 
take one of two values, i.e. right and down. 
The value right indicates that all the 
components which appear in this view will be to 
the right of each other, and down indicates that 
all the components which appear in this view 
will be below each other. 
 

• close indicates the end of the currently open 
view. 
 

• symbol (str : string) constructs a 
primitive view containing a string str. For an 
output operation it will show the value of the 
string str, for an input operation it will accept a 
string str. 

 
POOL’s type system supports multiple views for 
values of user-defined types in a modular manner. A 
view may consist of other views, called sub-views. 
This nesting of views forms a hierarchical structure 
that may be organized to any number of levels, 
directly or indirectly, by referencing other views in a 
given view. This approach also imposes the data 
hiding principle on every level of a system design.  
 
The example given in Figure 1, below, defines three 
different views for a type date (only view 
definitions are shown). In this example three views 
namely date_us, date_uk and a default view 
date are defined. The view date_uk defines a 
view   for date type in day/month/year format, 
date_us defines a view for date type in 
month/day/year format, and date is a default 
view which is defined using the date_uk view, i.e., 
when no view is explicitly mentioned for an object of 
type date this view will be use to manipulate values 
during input/output. 
 

 
 
Figure 1: View Definition for A User-defined Type 
‘date’. 
 
 
One advantage of building and organising views in 
this manner is that the resulting implementations 
have the potential for reuse since a given view, or 
element of a view, may be replaced by another 
without arbitrary constraints being imposed on such 
substitutions. In addition, the resulting 
representations of view components do not constrain 
their elements to particular layouts, e.g., layouts 
whose components appear in pre-determined 
positions relative to one another. Equally 
importantly, low-level details relating to such 
components need not be of concern to a programmer. 
 
3. Using Views 

 
A view can be used in three different ways: (1) It can 
be used in an input (output) operation via read (write) 
statements; (2) it can be used when object values are 
directly manipulated, e.g., during assignment and 
expression evaluation; (3) it can be used for data 
marshalling. The next three subsections describe 
these three cases in detail. 
 
3.1 Input / Output Operations 
 
This view activation mechanism provides a 
distinction between type operations and type views. 
The input/output operations currently supported by 
the system include: 

 
write ( x:  view;   dev ) 
read  ( x:  view;   dev ) 
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row 2, the same value of object d is displayed on a 
standard output device std (i.e. a monitor) using the 
date_uk view and the value is displayed in 
day/month/year format. In row 3, the same 
value of object d is displayed on a standard output 
device std (i.e. monitor), using the date_us view 
and the same value will appear on the output device 
but in month/day/year format. In row 4, no 
explicit view is indicated to output the value of 
object d on a standard output device std (i.e. 
monitor). In this case, the default view date will be 
used by the system and the value is               
displayed on the output device in 
day/month/year format. 

where x is object name and view is the name of the 
view used to input or output x. If no view name is 
given then the default view is used to input or output 
a value. The input and output operations are 
performed via some device dev, as given in Table 1. 
 
Table 2 shows the usage of the views defined in 
Figure 1 during the input and output of an object d of 
type date. In Table 2, row 1, a value is obtained from 
the user via the date_uk view for an object d of 
type date. When this statement is executed it will 
obtain a value from the user through a standard input 
device std (i.e. a keyboard) and validate that value 
against the view  date_uk  for  the  type  date.  In 
 
 
Table 1: Input / Output Devices for read/write Operations 
 

Sr. No Device Explanation 
1 std standard input/output device, e.g. keyboard, monitor 

2 sto persistent store 

3 prn printing device 

4 com Communication Link (Socket, port etc) 
 
 

Table 2: System Interaction 
 

Sr. No Operation Action Output 

1 read (d:date_uk, std); user-input 25/10/98 

2 write(d:date_uk, std); output 25/10/98 

3 write(d:date_us, std); output 10/25/98 
4 write(d,         std); output 25/10/98 

 
 
3.2 Direct Value Manipulation 
 
The code in Figure 2 demonstrates how value of an 
object of type date is used directly in a program 
text. In this example, two objects of type date are 
declared, and the object start is assigned a date 
value using the default view of the date type. The 
value for the object finish is obtained by user 
input via the date_us type. These two objects, i.e., 
start and finish, are then used in an expression 
which involves an operation less defined for the type 
date. In other programming languages, a user-
defined type object can be initialized at the time of 
creation only and it become quite difficult in the 
body of the program where comma separated 
primitive values are used to initialize every object 
field.  
 

In Figure 3, a fragment of code exploits the use of 
these views in a programming environment. This 

example shows how user-defined values can be used 
directly. The tree structure on the right-hand side of 
 

 
 

Figure 2: Direct value manipulation 
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Figure 3: Code Fragment and underlying structure 

 
Figure 3 shows the underlying structure of the code 
on the left-hand side. At Tag 1, an object named 
finish of a user-defined type Point_3 is directly 
assigned a value, whereas at Tag 2, another value of 
the same type is used in a Boolean expression as a 
parameter to a function. In this example, great is 
an operation of a user-defined type Point_3, and   
great: Point_3 → Boolean. 
 

 

It should be noted that only the default view is used 
to directly manipulate the value of a user-defined 
type in a program. This is a major limitation of direct 
value-manipulation in a program’s source code. A 
solution to this problem is to specify the name of the 
view along with the direct value of a user-defined 
type. This solution solves the above mentioned 
problem but creates an ambiguity due to fact that the 
given view name can also be manipulated as a part of 
the value.  
 
3.3 Marshalling 

  
In Remote Procedure Calls [8,9], the transfer of 
message data between two nodes requires encoding 
and decoding of the message data known as 
marshalling. In order to encode and decode such data 
the tagged or untagged representation methods are 
used to marshal arguments and results which must be 
known to both client and the server. The structure of 
this data reflects all primitive types, structured types 
and user defined types. The systems which support 
marshalling either require the user to explicitly 
define marshalling procedures for user-defined types 
[10] or provide some limited built-in procedures to 
marshal compound types built from the scalar ones. 
One solution of this problem is to define an 
initialising function or marshalling procedures for 
every user-defined type. This function/procedure 

takes the required value, in terms of values of built-in 
types, and initialises the variable (of some user–
defined type) in order that it can be used in 
expressions or passed to a remote node for 
processing. Unfortunately, this approach is rather 
restrictive when there is a need to support the direct 
manipulation of values of user-defined types, and it 
also limits the expressive power of a language. 
 
Whenever an object of a user-defined type is sent to 
another node in a distributed environment, its 
associated view will also be made available to the 
receiving node at compile time. When the object is 
received on that node the associated view will be use 
to manipulate the object according to its view on the 
sending node and no restriction will be imposed and 
complete transparency will be maintained. 
 
4. View Inheritance 

  
Sub-type views are defined using super-type views 
because the data hiding principle of object-oriented 
languages does not allow direct access to the 
attributes of a type by another type. If a type is 
inherited by another type, the views of both types 
should be defined with care because an inherited type 
includes all of the operations, attributes and views of 
its super-type. In order to define the views of a sub-
type, the definitions of super-type views need special 
treatment, for example, if some start and end 
symbols are used in the definition of a super-type 
view, these symbols will also be inherited by the sub-
types views which is not required there as they mark 
the beginning and end of a concrete representation of 
a value. 
 
One solution is to define a view in two steps or parts. 
First a view without start and end symbols is defined. 

1

3 

CompStat

AssignStat

WhileStat

   Object 
 "Finish"

 
   Value 
"(23,10,45)"

great

 Value 
"(10,34,67)"

CompStat

Block

CURSOR

AssignStat

   Object 
  "start"

   Object 
  "Finish"

   Object 
 "start"

2
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Another view then uses this view and introduces the 
required start and end symbols. The first view will 
then also be used as the basis for defining all views 
of its sub-types. This technique is used to define two 
types Point and Point_3, shown in Figures 4 and 
5 (no operations are shown). Type Point defines a 
point (x,y) in two-dimensions, whereas type 
Point_3 defines a point in three dimensions having 
 

a format (x, y, z). In this example, type 
Point_3 inherits type Point. Type Point 
defines two views namely simple and Point, 
where the simple view defines a view without 
starting and ending symbols and the Point view 
uses the simple view to define the default view of the 
type Point by appending start and end symbols in 
the view simple. 

 

              
 

Figure 4: View Definition of Point type                              Figure 5: View Definition for Point_3 Type     
 
 

When the type Point_3 inherits from the Point 
type, it inherits both the view simple and the 
view Point together with other attributes and 
operations. When we define the simple view for 
Point_3, we will use the view which is defined 
without start and end symbols otherwise those 
symbols will appear in the Point_3 view and the 
format for its view will become ((x,y),z) 
instead of (x,y,z). Therefore, we use the 
simple view of Point type and define a view 
define the default view Point_3. Note that in the 
simple view of the Point_3 type we use its 
super-type view via super. This also helps to 
distinguish between super-type and sub-type views 
with the same name. These views can also be 
nested with any other super-type at other higher 
levels iteratively.  
 
The disadvantage of this technique is that we have to 
define at least two views for every type, i.e. one 
without a start and end symbol, and the other with a 
start and end symbol which uses the first view. The 
logical improvement to the second technique is to 
ensure that the starting and ending symbols of every 
type are specific to that type and when any other type 
inherits from that type, the starting and ending 

symbols are truncated by the view mechanism. This 
enables new starting and ending symbols to be 
appended to an inherited view. 
 
The improved version of the above examples is 
shown in Figures 6 and 7. In Figure 6, the type 
Point is shown with only one view Point which 
is a default view of this type. This view is defined 
with start and end symbols and will produce a value 
in (x,y) format. In Figure 7, type Point_3 is 
shown with its default view Point_3. Since 
Point_3 inherits from the type Point, it inherits 
the view Point. This view Point is directly 
incorporated into the definition of the view 
Point_3 in the type Point_3. When the system 
encounters an inherited view in a subtype view it will 
truncate the starting and ending symbols, if any, of 
the inherited view and the resulting view will display 
the values with new start and end symbols. In this 
case it will display the values of type Point_3 in 
(x, y, z) format by truncating the start and end 
symbols at the places used by the inherited view. The 
truncation operation is an integral part of language 
processor for view-mechanism. 
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Figure 6: Improved View for Point Type                                Figure 7: Improved View for Point_3 Type 
 
 

5.  Type Inference 
  
One major problem associated with direct 
manipulation of values of user-defined types is type 
inference for those values. This section describes the 
type inference strategy adopted to infer the type of 
values of user-defined types. 
 
In POOL’s type system a view is an integral part of a 
type definition and a type can have more than one 
view. In other words, if Γ is a well formed (◊) static 
typing environment and α is a user-defined type then 
α must have one or more views υ. 

 

  

Γ  f   ◊    Γ   f   α
Γ  f   υi  →  α( )  i ∈ 1..n

                   (1) 

 
In POOL, an object τ can have more than one valid 
type    

 
  Γ  f   τ : α1 | ... |α n                      (2) 

 
a valid type α can have more then one view υ   
 

  

Γ  f   ◊    Γ  f   α
Γ  f   α →  υ i( )  i ∈ 1..n

                    (3) 

 
There are two different methods to infer the type of a 
given value in an expression. Either method can be 
used to infer the type of a value. In some cases both 
methods must be used to infer the type of a value. 
The following subsections describe these two 
methods. 
 
5.1 Method 1  
 
This method is used to infer the type of a value when 
it is used in an expression. The method is based upon 
determining the required type of the term in an 

expression as discussed in [11, 12, 13, 14]. Using this 
method, when a value is used directly in an 
expression the required type(s) of the expected value 
can be determined by inspection: 

 
a) If it is used in as an operation argument, then the 
type(s) of the parameter can be determined from its 
definition, and hence the given value should be one of 
those type(s). In this case the type of the value will 
become the active type of that parameter. In Figure 3 
an operation great: Point_3 → Boolean is 
shown. When a direct value (23,10,45) is directly 
passed to this operation, this value is inferred as of 
type Point_3 by the definition of the operation. 
 

b) If it is used as a term in an expression, then 
the allowed type(s) of that term can be used to infer 
the type of the value. That type will become the 
active type of that term. In Figure 2 an object start 
of type Date is declared. In the body of the program 
a value 12/10/99 is assigned to this object. In case 
of any ambiguity, the value assigned to this object 
will be inferred to the declared type of the object. 
 
5.2 Method 2 
 
This method is based upon using default or other 
views to infer the type of a value. In this method, 
concrete views are mapped onto a given value. To 
apply this method, a graph, as shown in Figure 8, is 
constructed. This graph is composed of a number of 
branches equal to the number of starting symbols of 
views in a type system. The depth of every tree is 
equal to the maximum number of symbols present in 
a view that starts from the symbol root of this tree. 
Each node stores information which corresponds to 
the view match for that sequence of symbols. When a 
user-defined value is encountered, the graph is 
traversed until the value is matched completely with 
some type’s view. 
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Figure 8: Type Inference Graph 
 
 

In Figure 8(a), a path 1-2-3 is shown in which path 1 
represents a Byte value, path 1-2 represents a 
Real value, and path 1-2-3 a value of type Angle. 
In Figure 8(b) the paths for values of type Point 
and Point_3 are shown. The views for these types 
are defined in Figures 6 and 7. The path 1-2 
represents a value of type Point whereas a value of 
type Point_3 is represented by path 1-2-3. 
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Figure 9: Type inference graph for type Date 
 
 

In Figure 9, the type inference graph for type Date 
is shown. This graph shows the situation when two 
or more views have same inference graph. In this 
graph, it is difficult to determine whether a 
date_us view is used or a date_uk is used 
because both views have the same type inference 
graph. In this case, a direct value in text should be 
processed by the default view of that type, i.e., 
Date, the remaining occurrences of such values will 
be treated in the same manner in the rest of the 
program while in the case of an input operation it is 

decided by using view names with the object name of 
that type, i.e, date_uk or date_us is used to 
manipulate the direct value. If no view name is 
explicitly specified then the default view will be 
used. When these two methods are combined with 
rules number (2) and (3) by keeping rule (1) intact, 
there are four combinations for inferring the type of a 
value as discussed below: 
 
Combination 1: This is the simplest case. In this 
case an object τ has only one type α and that type has 
only one view υ. In this case, the type of the object 
can be inferred directly by method 1. 
 

 

Γ  f  ◊    Γ  f   τ  :   α
Γ  f   α  →   υ( )  

 
This case is illustrated by the examples shown in 
Figures 6 and 7. The type inference graph of these 
types is shown in Figure 8. 
 
Combination 2: In this case an object τ has a type 
α, but that type can have more than one view υ. In 
this case, the type of the object can be inferred by 
method 1. 
 

 

Γ  f  ◊    Γ  f   τ  :   α
Γ  f   α  →   υ( ) i ∈ 1..n

 

 
This case is illustrated in Figures 4 and 5, where each 
type has two views. In Figure 10 the view graph or 
the view definitions of these types are shown. In 
Figure 10(a) the view graph for views Point and 
Point_3 are shown, while Figure 10(b) shows a 
simple view graph for these types. 
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Figure 10: View Graph with two view definitions 
 
 

Combination 3: An object τ has more than one type 
but each type has only one view. In this case the type 
of the value can be inferred by applying method 1 
and then method 2.

   

  

Γ  f   ◊    Γ  f   τ  :   α1 | ... |αn

Γ  f   αi   →   υi( ) 
i ∈  1..n  

 
It will take a maximum of ‘n’ matches, where ‘n’ is 
the number of allowed types of the object τ. 
 
Combination 4: An object τ can have more than 
one type and each type can have more than one view. 
In this case, the type of the value is first inferred by 
using method 1 and then method 2. 
  

  

Γ  f   ◊    Γ  f  τ :  α1 | ... |α n

Γ  f  α1 →  υ i( )i∈1..k  ... Γ  f   αn  →  υi( )i∈1..k

 

  
If Vi denotes the number of views in a user-defined 
type “i”, and “k” denotes the total number of types 
which an object τ of be, then it will take a maximum 
of matches to infer the type of the given object. 
 

Vi
i =1

k

∑
 

 
6. Summary and Conclusions 
 
Some systems support sophisticated user-interfaces 
allowing the definition of regions and specific 
computations over these regions [15,13]. However, 
such approaches neither seem to allow for a wide 
variety of data structures, nor do they seem to 
provide strong typing mechanisms through which the 
system could check that valid data is used in the 
computation. These systems are tightly-coupled with 

a regular text-based programming language, and are 
used at execution time to allow the user to examine 
and explore current values found in the various data 
structures of the program. Such systems have a fixed 
representation for every data construct [12], although 
some systems allow the user to choose between 
varieties of alternative display methods [11], and 
only offer low-level support for dynamic data 
structures based on the concept of pointers.  
 
The concrete representation extension presented here 
provides a systematic way of dealing with values of 
user-defined types. It fills a major gap between 
existing support for representing values of built-in 
types and a general lack of support for representing 
values of user-defined types. The view mechanism 
supports a hierarchically nested model of views in 
which type inference can be applied to values of 
user-defined types [16,17].  

 
The resulting views are reusable, inherited by all the 
sub-types of a user-defined type, and the same view 
can be used to manage marshalling operations and 
input/output. This paper has also proposed rules for 
concrete representations and for type inference, and 
enumerated the possible combinations of types and 
views for an object in a polymorphic, static typing 
environment. 
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