

Pak. J. Engg. & Appl. Sci. Vol. 2 Jan 2008

A View Extension to an Object-Oriented Type System

M. Naeem1 and C. J. Harrison2

1 Department of Computer Science, Government College University, Lahore, Pakistan
2 School of Informatics, University of Manchester, Manchester, UK

Abstract

Many languages provide support for describing composite and other user-defined types which in
turn depend upon built-in types. A built-in or primitive type is typically composed of a data
structure, a set of operations and a view or concrete external representation for that data
structure. User-defined types differ from primitive types in that they are typically composed of a
data structure and a set of operations only. This paper describes a view model which is an
integral part of an object-oriented development language named POOL (Persistent Object-
Oriented Language). The language provides a facility for defining multiple and complex views of
a user-defined type as an integral part of a type definition. These view definitions are used to
enable values of user-defined types to be manipulated directly, for example, during marshalling
and input/output operations. This paper also addresses the view inheritance problem associated
with user-defined views, and also discusses a type inference strategy adopted for inferring types
from values of user-defined types.

Keywords: View Model; Marshalling; Persistent Object-Oriented Language; View Inheritance;
Type Inference Strategy

1. Introduction

In Programming Languages, a built-in or primitive
type is typically composed of a data structure, a set
of operations and a view or concrete external
representation for its data structure. The view or
concrete external representation is built into the
language processor. When values of built-in types
are used, their concrete representation guarantees that
the resulting value is syntactically correct and type
inference for such values is relatively straight
forward.

Programming languages provide support for
describing composite and other user-defined types
which in turn depend upon built-in types.
User-defined types differ from primitive types
because they are typically composed of a data
structure and a set of operations only, i.e., there is no
view or concrete representation for a user-defined
type and all input/output processes are performed in
terms of built-in types. There is no general-purpose
mechanism available in any language to define views
or concrete representation of user-defined types.
Such view mechanism can only be implemented via
changes to the language processor which in turn
often initiates other changes. An alternate solution is
to use the external representation of a primitive type
to generate a mapping to a user-defined type’s own
external representation. However, this solution

makes type inference more complicated and
compromises the data hiding principle.

POOL [6] is an object-oriented class-based language
whose simple Pascal-like syntax, combined with
static type-checking, provides support for the rapid
construction of reliable reusable software. POOL
provides an extension to its object-oriented,
class-based type system which supports a general
purpose mechanism for describing concrete
representations for values of user-defined types.

There are a number of view mechanisms in common
use but these are typically limited to the context of
Object-Oriented DataBases (OODB) [1, 2, 3, 4].
However, little work has been done regarding the
implementation or realization of object-oriented
views [2, 5], i.e., there are no widely accepted
concrete representation or view mechanisms in the
context of object-oriented languages.

2. View Extension

In POOL’s type system, a type specifies the structure
of a set of values together with the valid operations,
and one or more views that may be applied to those
values. A view is an integral part of a type definition
and can be used directly to describe concrete
representations for values of a user defined type for
marshalling and input / output operations and direct

 Corresponding Author: M. Naeem (dr_majid_naeem@gcu.edu.pk)

manipulation of values of a user-defined type [7].

Further, every user defined type has at least one view
of the type’s name. This view is termed as the default
view and is used to process those values of
user-defined types where a view name is not
explicitly specified, e.g., values of user-defined types
in program text. A type inherits all the views of its
super-type and these inherited views can be extended
and modified in sub-types.

A view differs from an operation in that a view can
be used within an expression for direct object-value
manipulation, marshalling, assignment or processing,
i.e., such processing cannot be done by a method
(operation) within an expression. A view is
constructed using the following three primitives:

• open (d : direction) indicates the

start of a new view whose nested sub-views are
laid out along direction d which, in turn, can
take one of two values, i.e. right and down.
The value right indicates that all the
components which appear in this view will be to
the right of each other, and down indicates that
all the components which appear in this view
will be below each other.

• close indicates the end of the currently open
view.

• symbol (str : string) constructs a
primitive view containing a string str. For an
output operation it will show the value of the
string str, for an input operation it will accept a
string str.

POOL’s type system supports multiple views for
values of user-defined types in a modular manner. A
view may consist of other views, called sub-views.
This nesting of views forms a hierarchical structure
that may be organized to any number of levels,
directly or indirectly, by referencing other views in a
given view. This approach also imposes the data
hiding principle on every level of a system design.

The example given in Figure 1, below, defines three
different views for a type date (only view
definitions are shown). In this example three views
namely date_us, date_uk and a default view
date are defined. The view date_uk defines a
view for date type in day/month/year format,
date_us defines a view for date type in
month/day/year format, and date is a default
view which is defined using the date_uk view, i.e.,
when no view is explicitly mentioned for an object of
type date this view will be use to manipulate values
during input/output.

Figure 1: View Definition for A User-defined Type
‘date’.

One advantage of building and organising views in
this manner is that the resulting implementations
have the potential for reuse since a given view, or
element of a view, may be replaced by another
without arbitrary constraints being imposed on such
substitutions. In addition, the resulting
representations of view components do not constrain
their elements to particular layouts, e.g., layouts
whose components appear in pre-determined
positions relative to one another. Equally
importantly, low-level details relating to such
components need not be of concern to a programmer.

3. Using Views

A view can be used in three different ways: (1) It can
be used in an input (output) operation via read (write)
statements; (2) it can be used when object values are
directly manipulated, e.g., during assignment and
expression evaluation; (3) it can be used for data
marshalling. The next three subsections describe
these three cases in detail.

3.1 Input / Output Operations

This view activation mechanism provides a
distinction between type operations and type views.
The input/output operations currently supported by
the system include:

write (x: view; dev)
read (x: view; dev)

A View extension to an Object-Oriented Type System

43

Pak. J. Engg. & Appl. Sci. Vol. 2 Jan 2008

row 2, the same value of object d is displayed on a
standard output device std (i.e. a monitor) using the
date_uk view and the value is displayed in
day/month/year format. In row 3, the same
value of object d is displayed on a standard output
device std (i.e. monitor), using the date_us view
and the same value will appear on the output device
but in month/day/year format. In row 4, no
explicit view is indicated to output the value of
object d on a standard output device std (i.e.
monitor). In this case, the default view date will be
used by the system and the value is
displayed on the output device in
day/month/year format.

where x is object name and view is the name of the
view used to input or output x. If no view name is
given then the default view is used to input or output
a value. The input and output operations are
performed via some device dev, as given in Table 1.

Table 2 shows the usage of the views defined in
Figure 1 during the input and output of an object d of
type date. In Table 2, row 1, a value is obtained from
the user via the date_uk view for an object d of
type date. When this statement is executed it will
obtain a value from the user through a standard input
device std (i.e. a keyboard) and validate that value
against the view date_uk for the type date. In

Table 1: Input / Output Devices for read/write Operations

Sr. No Device Explanation
1 std standard input/output device, e.g. keyboard, monitor

2 sto persistent store

3 prn printing device

4 com Communication Link (Socket, port etc)

Table 2: System Interaction

Sr. No Operation Action Output

1 read (d:date_uk, std); user-input 25/10/98

2 write(d:date_uk, std); output 25/10/98

3 write(d:date_us, std); output 10/25/98
4 write(d, std); output 25/10/98

3.2 Direct Value Manipulation

The code in Figure 2 demonstrates how value of an
object of type date is used directly in a program
text. In this example, two objects of type date are
declared, and the object start is assigned a date
value using the default view of the date type. The
value for the object finish is obtained by user
input via the date_us type. These two objects, i.e.,
start and finish, are then used in an expression
which involves an operation less defined for the type
date. In other programming languages, a user-
defined type object can be initialized at the time of
creation only and it become quite difficult in the
body of the program where comma separated
primitive values are used to initialize every object
field.

In Figure 3, a fragment of code exploits the use of
these views in a programming environment. This

example shows how user-defined values can be used
directly. The tree structure on the right-hand side of

Figure 2: Direct value manipulation

44

Figure 3: Code Fragment and underlying structure

Figure 3 shows the underlying structure of the code
on the left-hand side. At Tag 1, an object named
finish of a user-defined type Point_3 is directly
assigned a value, whereas at Tag 2, another value of
the same type is used in a Boolean expression as a
parameter to a function. In this example, great is
an operation of a user-defined type Point_3, and
great: Point_3 → Boolean.

It should be noted that only the default view is used
to directly manipulate the value of a user-defined
type in a program. This is a major limitation of direct
value-manipulation in a program’s source code. A
solution to this problem is to specify the name of the
view along with the direct value of a user-defined
type. This solution solves the above mentioned
problem but creates an ambiguity due to fact that the
given view name can also be manipulated as a part of
the value.

3.3 Marshalling

In Remote Procedure Calls [8,9], the transfer of
message data between two nodes requires encoding
and decoding of the message data known as
marshalling. In order to encode and decode such data
the tagged or untagged representation methods are
used to marshal arguments and results which must be
known to both client and the server. The structure of
this data reflects all primitive types, structured types
and user defined types. The systems which support
marshalling either require the user to explicitly
define marshalling procedures for user-defined types
[10] or provide some limited built-in procedures to
marshal compound types built from the scalar ones.
One solution of this problem is to define an
initialising function or marshalling procedures for
every user-defined type. This function/procedure

takes the required value, in terms of values of built-in
types, and initialises the variable (of some user–
defined type) in order that it can be used in
expressions or passed to a remote node for
processing. Unfortunately, this approach is rather
restrictive when there is a need to support the direct
manipulation of values of user-defined types, and it
also limits the expressive power of a language.

Whenever an object of a user-defined type is sent to
another node in a distributed environment, its
associated view will also be made available to the
receiving node at compile time. When the object is
received on that node the associated view will be use
to manipulate the object according to its view on the
sending node and no restriction will be imposed and
complete transparency will be maintained.

4. View Inheritance

Sub-type views are defined using super-type views
because the data hiding principle of object-oriented
languages does not allow direct access to the
attributes of a type by another type. If a type is
inherited by another type, the views of both types
should be defined with care because an inherited type
includes all of the operations, attributes and views of
its super-type. In order to define the views of a sub-
type, the definitions of super-type views need special
treatment, for example, if some start and end
symbols are used in the definition of a super-type
view, these symbols will also be inherited by the sub-
types views which is not required there as they mark
the beginning and end of a concrete representation of
a value.

One solution is to define a view in two steps or parts.
First a view without start and end symbols is defined.

1

3

CompStat

AssignStat

WhileStat

 Object
 "Finish"

 Value
"(23,10,45)"

great

 Value
"(10,34,67)"

CompStat

Block

CURSOR

AssignStat

 Object
 "start"

 Object
 "Finish"

 Object
 "start"

2

A View extension to an Object-Oriented Type System

45

Pak. J. Engg. & Appl. Sci. Vol. 2 Jan 2008

Another view then uses this view and introduces the
required start and end symbols. The first view will
then also be used as the basis for defining all views
of its sub-types. This technique is used to define two
types Point and Point_3, shown in Figures 4 and
5 (no operations are shown). Type Point defines a
point (x,y) in two-dimensions, whereas type
Point_3 defines a point in three dimensions having

a format (x, y, z). In this example, type
Point_3 inherits type Point. Type Point
defines two views namely simple and Point,
where the simple view defines a view without
starting and ending symbols and the Point view
uses the simple view to define the default view of the
type Point by appending start and end symbols in
the view simple.

Figure 4: View Definition of Point type Figure 5: View Definition for Point_3 Type

When the type Point_3 inherits from the Point
type, it inherits both the view simple and the
view Point together with other attributes and
operations. When we define the simple view for
Point_3, we will use the view which is defined
without start and end symbols otherwise those
symbols will appear in the Point_3 view and the
format for its view will become ((x,y),z)
instead of (x,y,z). Therefore, we use the
simple view of Point type and define a view
define the default view Point_3. Note that in the
simple view of the Point_3 type we use its
super-type view via super. This also helps to
distinguish between super-type and sub-type views
with the same name. These views can also be
nested with any other super-type at other higher
levels iteratively.

The disadvantage of this technique is that we have to
define at least two views for every type, i.e. one
without a start and end symbol, and the other with a
start and end symbol which uses the first view. The
logical improvement to the second technique is to
ensure that the starting and ending symbols of every
type are specific to that type and when any other type
inherits from that type, the starting and ending

symbols are truncated by the view mechanism. This
enables new starting and ending symbols to be
appended to an inherited view.

The improved version of the above examples is
shown in Figures 6 and 7. In Figure 6, the type
Point is shown with only one view Point which
is a default view of this type. This view is defined
with start and end symbols and will produce a value
in (x,y) format. In Figure 7, type Point_3 is
shown with its default view Point_3. Since
Point_3 inherits from the type Point, it inherits
the view Point. This view Point is directly
incorporated into the definition of the view
Point_3 in the type Point_3. When the system
encounters an inherited view in a subtype view it will
truncate the starting and ending symbols, if any, of
the inherited view and the resulting view will display
the values with new start and end symbols. In this
case it will display the values of type Point_3 in
(x, y, z) format by truncating the start and end
symbols at the places used by the inherited view. The
truncation operation is an integral part of language
processor for view-mechanism.

46

Figure 6: Improved View for Point Type Figure 7: Improved View for Point_3 Type

5. Type Inference

One major problem associated with direct
manipulation of values of user-defined types is type
inference for those values. This section describes the
type inference strategy adopted to infer the type of
values of user-defined types.

In POOL’s type system a view is an integral part of a
type definition and a type can have more than one
view. In other words, if Γ is a well formed (◊) static
typing environment and α is a user-defined type then
α must have one or more views υ.

Γ f ◊ Γ f α
Γ f υi → α() i ∈ 1..n

 (1)

In POOL, an object τ can have more than one valid
type

 Γ f τ : α1 | ... |α n (2)

a valid type α can have more then one view υ

Γ f ◊ Γ f α
Γ f α → υ i() i ∈ 1..n

 (3)

There are two different methods to infer the type of a
given value in an expression. Either method can be
used to infer the type of a value. In some cases both
methods must be used to infer the type of a value.
The following subsections describe these two
methods.

5.1 Method 1

This method is used to infer the type of a value when
it is used in an expression. The method is based upon
determining the required type of the term in an

expression as discussed in [11, 12, 13, 14]. Using this
method, when a value is used directly in an
expression the required type(s) of the expected value
can be determined by inspection:

a) If it is used in as an operation argument, then the
type(s) of the parameter can be determined from its
definition, and hence the given value should be one of
those type(s). In this case the type of the value will
become the active type of that parameter. In Figure 3
an operation great: Point_3 → Boolean is
shown. When a direct value (23,10,45) is directly
passed to this operation, this value is inferred as of
type Point_3 by the definition of the operation.

b) If it is used as a term in an expression, then
the allowed type(s) of that term can be used to infer
the type of the value. That type will become the
active type of that term. In Figure 2 an object start
of type Date is declared. In the body of the program
a value 12/10/99 is assigned to this object. In case
of any ambiguity, the value assigned to this object
will be inferred to the declared type of the object.

5.2 Method 2

This method is based upon using default or other
views to infer the type of a value. In this method,
concrete views are mapped onto a given value. To
apply this method, a graph, as shown in Figure 8, is
constructed. This graph is composed of a number of
branches equal to the number of starting symbols of
views in a type system. The depth of every tree is
equal to the maximum number of symbols present in
a view that starts from the symbol root of this tree.
Each node stores information which corresponds to
the view match for that sequence of symbols. When a
user-defined value is encountered, the graph is
traversed until the value is matched completely with
some type’s view.

A View extension to an Object-Oriented Type System

47

 Pak. J. Engg. & Appl. Sci. Vol. 2 Jan 2008

Symbol '('

1

2

3

digit

Symbol '.'

Symbol '.'

Angle

Real

Byte

digit

digit

digit

1

2

3

Symbol ','

Symbol ','

Point

Point_3

digit

digit

Symbol ')'

Symbol ')'

(a) (b)

Figure 8: Type Inference Graph

In Figure 8(a), a path 1-2-3 is shown in which path 1
represents a Byte value, path 1-2 represents a
Real value, and path 1-2-3 a value of type Angle.
In Figure 8(b) the paths for values of type Point
and Point_3 are shown. The views for these types
are defined in Figures 6 and 7. The path 1-2
represents a value of type Point whereas a value of
type Point_3 is represented by path 1-2-3.

digit

1

2

3

Symbol '/'

Symbol '/'

Date

digit

digit

digit

Byte

Figure 9: Type inference graph for type Date

In Figure 9, the type inference graph for type Date
is shown. This graph shows the situation when two
or more views have same inference graph. In this
graph, it is difficult to determine whether a
date_us view is used or a date_uk is used
because both views have the same type inference
graph. In this case, a direct value in text should be
processed by the default view of that type, i.e.,
Date, the remaining occurrences of such values will
be treated in the same manner in the rest of the
program while in the case of an input operation it is

decided by using view names with the object name of
that type, i.e, date_uk or date_us is used to
manipulate the direct value. If no view name is
explicitly specified then the default view will be
used. When these two methods are combined with
rules number (2) and (3) by keeping rule (1) intact,
there are four combinations for inferring the type of a
value as discussed below:

Combination 1: This is the simplest case. In this
case an object τ has only one type α and that type has
only one view υ. In this case, the type of the object
can be inferred directly by method 1.

Γ f ◊ Γ f τ : α
Γ f α → υ()

This case is illustrated by the examples shown in
Figures 6 and 7. The type inference graph of these
types is shown in Figure 8.

Combination 2: In this case an object τ has a type
α, but that type can have more than one view υ. In
this case, the type of the object can be inferred by
method 1.

Γ f ◊ Γ f τ : α
Γ f α → υ() i ∈ 1..n

This case is illustrated in Figures 4 and 5, where each
type has two views. In Figure 10 the view graph or
the view definitions of these types are shown. In
Figure 10(a) the view graph for views Point and
Point_3 are shown, while Figure 10(b) shows a
simple view graph for these types.

48

A View extension to an Object-Oriented Type System

Symbol '('

digit

1

2

3

Symbol ','

Symbol ','
Point

Point_3

digit

digit

Symbol ')'

Symbol ')'

(a) (b)

digit

1

2

3

Symbol ','

Symbol ','

Point

Point_3

digit

digit

digit

 Point and Point_3 Views Simple View for Point and Point_3

Figure 10: View Graph with two view definitions

Combination 3: An object τ has more than one type
but each type has only one view. In this case the type
of the value can be inferred by applying method 1
and then method 2.

Γ f ◊ Γ f τ : α1 | ... |αn

Γ f αi → υi()
i ∈ 1..n

It will take a maximum of ‘n’ matches, where ‘n’ is
the number of allowed types of the object τ.

Combination 4: An object τ can have more than
one type and each type can have more than one view.
In this case, the type of the value is first inferred by
using method 1 and then method 2.

Γ f ◊ Γ f τ : α1 | ... |α n

Γ f α1 → υ i()i∈1..k ... Γ f αn → υi()i∈1..k

If Vi denotes the number of views in a user-defined
type “i”, and “k” denotes the total number of types
which an object τ of be, then it will take a maximum
of matches to infer the type of the given object.

Vi
i =1

k

∑

6. Summary and Conclusions

Some systems support sophisticated user-interfaces
allowing the definition of regions and specific
computations over these regions [15,13]. However,
such approaches neither seem to allow for a wide
variety of data structures, nor do they seem to
provide strong typing mechanisms through which the
system could check that valid data is used in the
computation. These systems are tightly-coupled with

a regular text-based programming language, and are
used at execution time to allow the user to examine
and explore current values found in the various data
structures of the program. Such systems have a fixed
representation for every data construct [12], although
some systems allow the user to choose between
varieties of alternative display methods [11], and
only offer low-level support for dynamic data
structures based on the concept of pointers.

The concrete representation extension presented here
provides a systematic way of dealing with values of
user-defined types. It fills a major gap between
existing support for representing values of built-in
types and a general lack of support for representing
values of user-defined types. The view mechanism
supports a hierarchically nested model of views in
which type inference can be applied to values of
user-defined types [16,17].

The resulting views are reusable, inherited by all the
sub-types of a user-defined type, and the same view
can be used to manage marshalling operations and
input/output. This paper has also proposed rules for
concrete representations and for type inference, and
enumerated the possible combinations of types and
views for an object in a polymorphic, static typing
environment.

REFERENCES

[1] Heiler, S. B. Zdonik; Proc. IEEE International

Conference on Data Engineering, (1990), 86-93.

[2] Kuno and E. A. Rundensteiner; The MultiView

OODB view system: Design and implementation,
Technical Report CSE-TR-246-95, University of
Michigan, (Jul 1995).

[3] H. Scholl, C. Laasch, M. Tresch; Proc. The Second

DOOD Conference, page 113-119 (Dec 1991).

49

 Pak. J. Engg. & Appl. Sci. Vol. 2 Jan 2008

[4] A. Rundensteiner; Proc. 18th VLDB
Conference, (1992), 187-198.

[5] Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,

D. Maier, S. Zdonic; In Building an Object-
Oriented Database System: The Story of O2,
Publisher Morgan Kaufmann Pub., (1992).

[6] C. J. Harrison and Majid Naeem; ACM

Symposium on Applied Computing Page 1118-
1121 Como, Italy (2000).

[7] C. J. Harrison and Majid Naeem A Model-

Oriented Programming Support Environment for
Understanding Object-Oriented Concepts,
Lecture Notes in Computer Science, Springer-
Verlag Heidelberg, Vol. 1964/2000,
ISSN: 0302-9743.

[8] Sun Microsystems; Remote Procedure Call

Protocol Specification, Networking on the Sun
Workstation, Sun Microsystems, Mountain
View, CA. (1985).

[9] Tay B.H., Ananda A.L.; Operating Systems

Review, 24(1990) 68-79.

[10] Bacon J.M., Hamilton K.G.; Distributed

Computing with RPC, The Cambridge
Approach. Technical Report No. 117. Computer

Laboratory, University of Cambridge, England
(1987).

[11] Tofte M.; Information and Computation,
89(1990) 1-34.

[12] Palsberg J.; Proc. 9Th Annual IEEE symposium
on Logic in Computer Science, (1994), 186-195.

[13] Mitchell J.C.; Proc. 11Th Annual ACM
Symposium on Principles of Programming
Languages, (1984), 175-185.

[14] Aiken A., E. L. Wimmers; Proc. ACM

Conference on Functional Programming and
Computer Architecture, (1993), 31-41.

[15] A. Kuno, E. A. Rundensteiner; Implementation
experience with building an object-oriented view
management system, Technical Report CSE-TR-
191-93, University of Michigan (1993).

[16] C. J. Harrison and Majid Naeem, Proc. IEEE

INMIC 2004, 8th International (IEEE) Multi-
topic Conference, Lahore, Pakistan, (2005), 133-
139.

[17] C. J. Harrison and Majid Naeem, Proc. IEEE
INMIC 2004, 8th International (IEEE) Multi-
topic Conference, Lahore, Pakistan, (2004), 737-
742.

50

	Keywords: View Model; Marshalling; Persistent Object-Oriented Language; View Inheritance; Type Inference Strategy

