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Abstract 

In this paper, theoretical and experimental validation of state estimation capability of Extended Kalman 

Filter (EKF) is done on MIMO twin rotor system. Different immeasurable states are estimated. For 

theoretical validation, states with different behaviors (e.g. random, exponential, sinusoidal and abruptly 

changed) are generated and outputs are calculated. These outputs are invoked in EKF algorithm that 

provides an estimate of above generated states. Comparison between self-generated and estimated states 

is made. In practical, information of immeasurable process states is needed. Therefore experimental 

readings of inputs and outputs of the system are inserted in the EKF algorithm that provides the close 

estimate of desired immeasurable states. This experimental validation is carried out for open loop and 

closed loop twin rotor system data. The results show that EKF estimates are precise and fast convergent 

to the actual twin rotor states. 
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1. Introduction

In the most applications, internal states of a 

process are either immeasurable or inaccessible; 

rather, system outputs are measurable containing 

noise of certain magnitude. The true knowledge of 

internal states is necessary for system monitoring or 

their ultimate use in control design and fault 

diagnostics etc. In such situations, state estimators 

can be utilized to evaluate process states provided 

that the information of inputs and outputs is 

available. Kalman filter is one such a tool 

developed by R.E Kalman in 1960 [1]. Now a day, 

it is extensively used to estimate the immeasurable 

system states from noisy outputs.  Noise corrupted 

outputs of the system act as an input to the filter. 

Thereafter, its algorithm recursively keeps 

adjusting its parameters to arrive at close estimate 

of the desired immeasurable states.  Kalman Filter 

adjusts its parameters by averaging the noisy 

measurements [2].  It computes state estimates for 

linear systems.  State can be stationary or non-

stationary. Also system can be time invariant or 

varying. Moreover, its algorithm is rather intuitive, 

logical and easy to understand. Its stability analysis 

has been carried out in detail [3]. Also Kalman filter 

comparatively require less computational 

complexity in the galaxy of estimation algorithms 

[4]. Kalman filter has become a popular state and 

parameter estimation tool, due to its wide problem 

handling capabilities and large number of variants. 

It has been categorically used as an estimator, as a 

filter and as a data Fusion tool [5-6]. Major areas of 

Kalman applications include aerospace, data 

networks, navigations, digital and adaptive signal 

processing, fault diagnosis, parametric estimation, 

and dual estimation problems [5-6]. In aerospace, 

Kalman filter has been used for generation of 

nonlinear control law for gyroscope PWM torque 

loop, where it estimates rotor velocity and flux of 

an induction motor [7]. The EKF's performance is 

demonstrated using both a straight-and-level 

manoeuvre and a complicated manoeuvres 

recorded on-board a manoeuvrings F-15. In both 

cases, the state estimates of the EKF are similar to 

the results obtained from a coordinated flight model 

[8]. Many aerospace systems are characterized by 

nonlinear models as well as noisy and biased sensor 

measurements. Extended Kalman Filter (EKF) is a 

commonly used algorithm for recursive parameter 

identification due to its excellent filtering properties 

and is based on a first order approximation of the 

system dynamics. EKF has enabled aerodynamic 

specialists to estimate aerodynamic coefficients of 

projectiles. Estimation is based on three discrete 

flight measurements that include three spatial 

positions and three angular orientations. [12]. In 

direct vector control of induction machines, the 
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instantaneous rotor flux vector is measured using 

sensors, estimators or a combination of both. Since 

the basic Kalman filter is a state estimator, its use 

in vector-controlled schemes has received much 

attention, including reduced-order variants. [11]. 

Digital signal processing based EKF estimation has 

been done for speed and rotor position estimate of 

a PM synchronous motor [14]. In field oriented 

control induction motors, In order to know the 

instantaneous flux, accurate values of rotor 

resistance must be known. An Extended Kalman 

Filter (EKF) is employed for rotor resistance 

estimation [15].  

 Apart from aerospace applications, Kalman 

has also been extensively used. For example, the 

EKF used in radar tracking applications is 

computationally intensive leading to difficulties in 

broadband real-time applications. The EKF 

algorithm is analyzed in detail for reduction of 

number of computations [16]. Kalman filter has 

also been used for estimation of competing 

terminals in an IEEE 802.11 network export [17]. 

Fault Classification in products in production plants 

has been done via Kalman filter [19]. Extended 

Kalman filter is used for GPS C/A code tracking 

and interference rejection applications [20]. 

Kalman filter tuning capability is used to control the 

photo resist properties of a semiconductor while its 

manufacture, Kalman do its control job by precisely 

tuning itself to minimize the drift in process states 

values due to noise. This feature enables 

semiconductor manufacturer to design even micro 

scale integrated devices [21]. EKF has been used to 

estimate the linearized direct and indirect stiffness 

and damping force coefficients for bearings in 

rotor-dynamic applications from noisy 

measurements of the shaft displacement in response 

to imbalance and impact excitation [10].  

The EKF can efficiently work in non-linear 

systems which makes it quite suitable especially for 

WSN applications [22]. Moreover, [23] has 

discussed the computational complexity of EKF, 

applications where requirement of analytical 

Jacobean and Hessian seem prohibitive. [23] 

Presented tools to facilitate an EKF2 with lower 

complexity as compared to the straightforward 

implementation using explicit Jacobean and 

Hessian [23]. 

One of the reason behind utilizing EKF is 

that the EKF is easier to implement and is faster 

than UKF in applications like Probabilistic 

Robotics etc.   It brings saving in computational 

resources as these filters are implemented on 

embedded systems. The EKF being ubiquitous, is 

easy to tune and corresponding parameters are well 

understood. Finally, why bring a replacement? 

When EKF is already working in an existing 

environment. This is one of the reason why we used 

this variant of the filter [24]. Further studies on EKF 

can be seen in [25-26]. Finally, the studies related 

to dynamic system analysis related to renewable 

energy resources can be seen in [27-31]. 

The present paper uses EKF to estimate the 

states of twin rotor from the self-generated and 

experimental measurements of inputs and outputs. 

The paper is organized as follows. Section II 

describes the step by step development of standard 

and extended Kalman algorithms. The 

computational results for system model after 

applying EKF are discussed in Section III. Then the   

Simulation results of state estimation are presented 

for different self-generated state behaviors e.g. 

random, exponential, sinusoidal and abruptly 

changed are presented in section IV. In section V 

experimental validation results in open and closed 

loop are discussed.  

2. Kalman filter algorithm 

2.1 Development of Kalman filter 
algorithm 

For estimation Kalman filter requires linear 

(linearized) system model, actual outputs, noise 

covariance of process and outputs. Once these are 

known, Kalman filter recursively average the 

output corresponding to required unknown state.  

Step by step development of its algorithm is 

explained below 

1) System Model 

The forced system model whose unknown 

states (𝑥𝑡) are to be estimated from actual output 

(𝑧𝑡) takes the shape 

𝑥 . = 𝐹𝑥𝑡 + 𝐺𝑢𝑡 + 𝑤𝑡 

𝑦𝑡 = 𝐻𝑥𝑡+𝑣𝑡        (1) 

where x is the system state matrix of order n 

x 1, 𝐹 is the state coefficient matrix of order n x n, 

𝑥𝑡 is the previous state matrix of order n x 1, 𝐺 is 

the input coefficients matrix of order n x m, 𝑢𝑡 is 

the input matrix of order m x 1, 𝑤𝑡 is the process 

noise matrix of order n x 1, 𝑧𝑡 is the outputs matrix 

of order m x 1, 𝐻  is the output coefficient matrix of 

order m x n,  𝑣𝑡 is the output noise matrix of order 

m x 1. Where m denote the number of inputs and n 

denote the order of the system. 

2) Noise Statistics 

Kalman filter requires process and output 

noise covariance to be specified. That is computed 

from 

𝑄 = 𝐸[𝑤𝑡𝑤𝑡
𝑇]        (2) 
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where 𝑄 is the process noise covariance, and 

 𝑅 = 𝐸[𝑣𝑡𝑣𝑡
𝑇]                     (3) 

where 𝑅 is the output noise covariance. 

As Kalman filter implement recursive 

algorithm, we need to initialize state and error 

covariance matrix. Afterwards it recursively 

compute error covariance from 

𝑃𝑡 = 𝐸[𝑒𝑡𝑒𝑡
𝑇]                      (4) 

where 𝑃𝑡 is the error covariance, 𝑒𝑡 = 𝑥𝑡 −
𝑥𝑡

^ is the difference between actual and estimated 

states, 𝑥𝑡 represent actual state matrix and 𝑥𝑡
^ 

represent estimated states matrix. 

3) Prior Estimation (Prediction Stage) 

After 𝑥𝑡−1
^  and  𝑃𝑡−1 is initialized, Kalman 

filter compute 𝑥𝑡
^−(i.e. state estimate prior to the 

occurrence of output) and 𝑃𝑡
−(i.e. error covariance 

prior to the occurrence of output) using relation 

𝑥𝑡
^−

= 𝐹𝑥𝑡−1
^ + 𝐺𝑢𝑡−1 

𝑃𝑡
− = 𝐹𝑃𝑡−1𝐹

𝑇 + 𝐺𝑄𝐺𝑇            (5) 

as this computation is performed before actual time 

has arrived, we call this stage as “Prediction stage”. 

4) Correction Stage 

Now as actual output (𝑧𝑡) is available, the 

𝑥𝑡
^−

 and 𝑃𝑡
− are validated with available output, 

necessary scaling of error is done by multiplying 

‘𝐾𝑡’ (Kalman Gain) and is added with  reference 

offset 𝑥𝑡
^−

 as below 

𝑥𝑡
^ = 𝑥𝑡

^−
+ 𝐾𝑡(𝑦𝑡 − 𝐻𝑥𝑡

 ^−
)          (6) 

In (ii) 𝐾𝑡 must be known to finalize the 

estimate, which is derived in four steps i.e. Put 𝑥𝑡
^ 

in (i) and then put 𝑒𝑡 in 𝑃𝑡 = 𝐸[𝑒𝑡𝑒𝑡
𝑇] and solve 

for 𝑃𝑡. Now choose 𝐾𝑡 so that terms containing 𝐾𝑡 

are zero and finally solve for 𝐾𝑡 to finally arrive at 

𝐾𝑡 = 𝑃𝑡
−𝐻𝑇(𝐻𝑃𝑡

−𝐻𝑇 + 𝑅)−1         (7) 

Once 𝐾𝑡 is computed, putting it in (i) gives 

the required state estimate of immeasurable state. 

Finally 𝑥𝑡−1
^  and 𝑃𝑡−1 matrices are updated to redo 

the same process. 

2.2 Extended Kalman Filter 

In case of nonlinear system modeled as 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡−1, 𝑤𝑡−1) 
𝑦𝑡 = ℎ(𝑥𝑡, 𝑣𝑡)             (8) 

Estimation becomes a two-step process 

i) Linearization of System 

ii) Implementation of Kalman Filter 

Algorithm 

i)  Linearization 

In linearization step, Jacobean matrices are 

computed as 

𝐴[𝑖,𝑗] =
𝜕𝑓[𝑖](𝑥𝑡−1

^ ,𝑢𝑡−1,0)

𝜕𝑥[𝑗]

𝐵[𝑖,𝑗] =
𝜕𝑓(𝑥𝑡−1

^ ,𝑢𝑡−1,0)

𝜕𝑢[𝑗]

𝑊[𝑖,𝑗] =
𝜕𝑓[𝑖](𝑥𝑡−1

^ ,𝑢𝑡−1,0)

𝜕𝑤[𝑗]

𝐻[𝑖,𝑗] =
𝜕ℎ[𝑖](𝑥𝑡

^,0)

𝜕𝑥[𝑗]

𝑉[𝑖,𝑗] =
𝜕ℎ[𝑖](𝑥𝑡

^,0)

𝜕𝑣[𝑗] ]
 
 
 
 
 
 
 
 
 
 

               (9) 

and then these matrices are evaluated at 

Linearization point (𝑥𝑡 , 𝑢𝑡) to get the linear form of 

nonlinear model. 

ii). Once linear model is available we apply 

algorithm mentioned in ‘A’. 

3. MIMO TWIN ROTOR SYSTEM 

The twin rotor CE-150 is a nonlinear system 

comprising of seven states. It has two inputs, one 

each for elevation and azimuth motors. Two outputs 

of this system are elevation and azimuth angles 

respectively. The nonlinear model of this system 

takes the shape 

 

𝑥1̇ =
1

𝑇1
(−𝑥1 + 𝑢1)

𝑥2 =̇ 𝑥3

𝑥3̇ =
1

𝐼1
((𝑎1𝑥1)

2) + 𝑏1𝑥1 − 𝐵1𝑥3 − 𝑇𝑔 sin 𝑥2 −

𝐾𝑔𝑦𝑟𝑜𝑢1𝑥6 cos 𝑥2)

𝑥4̇ =
1

𝑇2
(−𝑥6 + 𝑢2)

𝑥5̇ = 𝑥6

𝑥6̇ =
1

𝐼2
((𝑎2𝑥4)

2) + 𝑏2𝑥4 − 𝐵2𝑥6 − 𝑇𝑝𝑟𝑥7
− 𝐾𝑟𝑇𝑜𝑟𝑢1)

𝑥7̇ = −𝑇𝑝𝑟𝑥7 + 𝐾𝑟𝑇𝑜𝑟𝑢1   

𝑦 = [
𝑦1

𝑦2
] = [

𝑥2

𝑥5
] ]

 
 
 
 
 
 
 
 
 
 
 
 

                                                        

(10) 

where [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7]
𝑇 are the main 

motor speed, elevation angle, angular speed in 

elevation, side motor speed, azimuth angle, angular 

speed in azimuth and angular moment caused by 
𝑢1 on azimuth respectively. 

EKF algorithm has been applied to twin rotor 

system model. Jacobeans for above system before 

substituting the point of linearization are listed in 

Eq (11). 



Pak. J. Engg. Appl. Sci. Vol. 32, January, 2023 

4 

𝐴 =

[
 
 
 
 
 
 
 
 
 −

1

𝑇1
0 0 0 0 0 0

0 0 1 0 0 0 0
(𝑏1+2𝑎1𝑥1)

𝐼1

−𝑇𝑔

𝐼1

−𝐵1

𝐼1
0 0−𝐾𝑔𝑢1 cos 𝑥2 0

0 0 0 0 0
−1

𝑇2
0

0 0 0 0 0 1 0

0 0 0
(𝑏2+2𝑎2𝑥4)

𝐼2
0

−𝐵2

𝐼2

𝑇𝑝𝑟

𝐼2

0 0 0 0 0 0 −𝑇𝑝𝑟]
 
 
 
 
 
 
 
 
 

  

 

𝐵 =

[
 
 
 
 
 
 
 
 

1

𝑇1
0

0 0
−𝐾𝑔𝑥6 cos 𝑥2 0

0
1

𝑇2

0 0
−𝐾𝑟𝑇𝑜𝑟 0
𝐾𝑟𝑇𝑜𝑟 0]

 
 
 
 
 
 
 
 

 ,   
𝐶=[

0 1 0 0 0 0 0
0 0 0 0 1 0 0

]

𝐷=[
0 0
0 0

]
 

    Linearization of this system at the initial 

point        𝑥𝑡=0, 𝑢𝑡=0 gives following matrices  

      𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 −

1

𝑇1
0 0 0 0 0 0

0 0 1 0 0 0 0
𝑏1

𝐼1

−𝑇𝑔

𝐼1

𝐵1

𝐼1
0 0 0 0

0 0 0 0 0
−1

𝑇2
0

0 0 0 0 0 1 0

0 0 0
𝑏2

𝐼2
0

−𝐵2

𝐼2

𝑇𝑝𝑟

𝐼2
0 0 0 0 0 0 −𝑇𝑝𝑟]

 
 
 
 
 
 
 
 
 
 
 

 

       𝐵        

=

[
 
 
 
 
 
 
 
 
 

1

𝑇1
0

0 0
0 0

0
1

𝑇2

0 0
−𝐾𝑟𝑇𝑜𝑟 0
𝐾𝑟𝑇𝑜𝑟 0 ]

 
 
 
 
 
 
 
 
 

, 𝐶 = [
0 1 0 0 0 0 0
0 0 0 0 1 0 0

]

𝐷 = [
0 0
0 0

]
 

                                (12) 

Once recursions start, this Jacobean is 

computed online every time by substituting the 

estimated values of state matrix 𝑥𝑡
^ and 𝑢𝑡. 

Note that in (12) the fifth column 

corresponding to Azimuth angle is zero i.e. this 

state (and its corresponding output) will not be 

measurable in open loop. Moreover the states 𝑥1, 

𝑥3and 𝑥6 are angular/motor speeds that are not 

practically measurable. These immeasurable states 

or any other system state values are closely 

estimated using EKF here.  

4. SIMULATION RESULTS 

(Results for self-generated state behaviors) 

In this stage states with different behaviors are 

generated in Matlab (these are taken as actual 

states) and outputs readings are computed. Outputs 

are invoked in EKF that yields the estimate of the 

states. The comparison of actual and estimated state 

and error between them is presented. 

  Initialize 𝑥0 = [0 0 0 0 0 0 0]𝑇 , and 𝑃0 = 𝐼. 

Process and measurement noise covariance are 

updated at every time step.   

4.1 Estimation of process states 
with random behavior 

State estimate for  𝑥2 compared with actual 

state, which is shown in Fig. 1. 

 

Fig. 1: Comparison of Actual and Estimated 

Elevation Angle when Elevation angle takes 

random values 

The error between actual and estimated state 

 𝑥2 is shown in Fig. 2. 

 

Fig. 2: Error between actual and estimated 

Elevation angle when elevation angle takes 

random values 
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(11) 
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4.2 Estimation of process states 
with   exponential behavior 

Actual states are now taken exponential. 

Comparison of actual and estimated states is shown 

in Fig. 3. 

 

Fig. 3: Comparison of Actual and Estimated 

Azimuth angle  when it  takes exponential 

values 

4.3 Estimation of process states 
with sinusoidal behavior 

Actual states are now taken sinusoidal. 

Comparison of actual and estimated states is shown 

in Fig. 4. 

 

Fig. 4: Comparison of Actual and Estimated 

Elevation angle  when it  takes sinusoidal 

values 

4.4 Estimation of process states 
with abrupt behavior 

Actual state of elevation angle is now 

modeled to take abrupt variations in magnitude. 

Comparison of actual and estimated states is 

performed as shown in Fig. 5. 

 

Fig. 5: Comparison of Actual and Estimated 

Elevation angle  when it  takes abrupt values 

5.  Experimental Results 

Results for Practical readings of inputs and 

outputs for Twin rotor System are presented in this 

section. Following figure shows the experimental 

setup: 

 

Experimental setup for twin rotor system 

Above shown CE-150 twin rotor system is 

developed by HUMUSOFT is a multidimensional 

naturally unstable system with two controlled 

inputs and two measured outputs with significant 

cross couplings. The Lab CE-150 TRS is designed 

for the study of dynamical systems, as well as for 

experiments supporting Control Theory. The 

experimental results are discussed next. 

5.1 Readings in Open loop 

The inputs and outputs of the twin rotor 

system are shown in Fig. 6 and 7 respectively. 

Note:For open and closed  loop analysis, 

reading on time axis is taken after every 0.001 

seconds of real time ( 7917  readings were taken in 

open loop and 5636 readings in closed loop .) 
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Fig. 6: Two inputs to the Twin rotor system 

 

Fig. 7: Two outputs of  the Twin rotor system 

The estimate of all the states is obtained. For 

demonstration estimate of state ‘x1and x5’ is shown 

in Fig. 8 and 9 respectively. 

 

Fig. 8: Estimate of state x1 

 

Fig. 9: Estimate of state x5 

The comparison of actual and estimated 

outputs is shown in Fig. 10 and 11. 

 

Fig. 10: Comparison of actual and estimated 

elevation angle output 

 

Fig. 11: Comparison of actual and estimated 

Azimuth angle output 
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5.2 Readings in Close  loop 

The inputs and outputs of the twin rotor 

system are shown in Fig. 12 and 13. respectively. 

 

Fig. 12: Two Controlled inputs of the Twin rotor 

system 

 

Fig. 13: Two outputs of the Twin rotor system 

The estimate of state ‘x1and x6’ computed 

using EKF is shown in Fig. 14 and 15 respectively. 

 

Fig. 14: Estimate of state x1 

 

Fig. 15: Estimate of state x6 

The comparison of actual and estimated 

outputs is shown in Fig. 16 and 17. 

 

Fig. 16: Comparison of actual and estimated 

elevation angle output 

 

Fig. 17: Comparison of actual and estimated 

elevation angle output 
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6. Conclusion 

The simulation tests for EKF were run by 

assigning different behaviors to the twin rotor 

states. Successful state estimation was observed for 

random, exponential, sinusoidal and abrupt state 

behaviors. EKF state estimates quickly converged 

to the actual values of the state. After convergence, 

error between actual and estimated states was 

minute that exhibit the high accuracy of EKF 

algorithm. Afterwards, states estimate (including 

immeasurable states) were extracted from the 

experimental data for open and closed loop twin 

rotor using the EKF.  These estimates serve as an 

alternate to a highly precise and costly instrument 

that was not available to measure the states. 
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