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Abstract 

Smartphones are a necessary part of our daily lives, and are equipped with a range of sensors. These 

two characteristics make them a much preferred data collection device, when compared with other 

wearable sensors and devices. However, due to huge amount of data collected, issues like processing 

cost and battery consumption are limiting factors. In order to tackle these issues, the current study aims 

at achieving acceptable detection accuracy while decreasing the data collection frequency, hence 

reducing processing cost and battery consumption. To begin with, several classification algorithms are 

compared. Results suggest that boosted decision tree provides the highest accuracy closely followed by 

random forest; however, random forest is preferred because it requires less processing time. Detection 

accuracies are calculated at various data collection frequencies, and subsequently improved by 

addressing the issue of imbalanced data with the introduction of weighted random forest. Further 

improvement is achieved by applying a two-step post-processing method. Overall accuracy for 0.2 Hz 

frequency data is improved from 94.98% to 98.78%, whereas for 0.067 Hz frequency, the increase is 

from 89.16% to 95.40%. Accuracy drop of 3.42% from 0.2 Hz to 0.067 Hz is tolerable because it results 

in 81.96% decrease in processing time. 

Key Words: Classification, Post-Processing; Smartphone, Travel Mode, Weighted Random 

Forest 

1. Introduction

Travel related data is collected by two broad 

methods. The first method relies on the memory of 

the respondent wherein the respondent is asked to 

answer some questions regarding daily travelling. 

This approach has been in practice for a long time 

and is still being applied in many countries around 

the world. With the passage of time, improvements 

have been incorporated like using travel diaries, 

telephone and internet for data collection. Despite 

the widespread usage of this method, it has some 

inherent drawbacks. The root of the problem is the 

reliance on memory of the respondent. It leads to 

incorrect recording of starting and ending times of 

the individual trips as well as skipping of small 

trips. Another problem is the low response rate 

primarily due to the large number of questions to be 

answered, which is hectic and time-consuming.  

To address the drawbacks of conventional 

data collection method, a second method is widely 

investigated in which the information is 

automatically recorded by devices. These devices 

can either be installed at fixed locations or can be 

carried around by the respondents. Experiments 

have been conducted using Global System for 
Mobile (GSM) communications [1, 3, 23], local 

area wireless technology (Wi-Fi) [14], Global 

Positioning System (GPS) [24], accelerometer [2, 

19] and smartphones [15, 18]. Smartphones are 

used recently for collection of travel related data 

because of the integration of sensors like GPS, 

accelerometer and gyroscope, and due to its 

increasingly high penetration rates among 

countries. Almost the same methodology is 

followed by all the researchers exploring the scope 

of smartphones for mode prediction. To start with, 

sensors’ data is collected with the help of 

smartphones. This raw data is then used to extract 

meaningful features that are fed to a classification 

algorithm for training and subsequent testing or 

prediction Table 1 summarizes some of the past 

studies that utilized data collected by one or 

multiple sensors like accelerometer, GPS and 

gyroscope, for travel mode detection. It is evident 

from the table that most of the previous studies 

selected high data collection frequencies yielding 

huge amounts of data. More the data, better the 

algorithm will be, but it will result in more 

processing cost and will also affect the battery time 

of smartphones. If the same or slightly 

compromised detection accuracy can be achieved at 

a lower data collection frequency, the said problems 

can be reduced. The current study aims to achieve 

this goal. 
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Over the years, many classification 

algorithms have been developed, and many among 

them, have been applied in the field of travel mode 

detection. For example, Neural Network [5, 8], 

Bayesian Network [13, 30], Decision Tree [18, 30], 

Support Vector Machine [17, 29, 30], Random 

Forest [19] etc. 

The current study can be divided into two 

parts. The first part compares various popular 

algorithms reported in literature in order to 

ascertain the one best suited for travel mode 

prediction from data collected through 

smartphones. The comparison is done by taking two 

criteria into account, accuracy and computational 

time. 

The second part deals with refining the mode 

detection methodology in order to improve the 

detection accuracy at low data collection frequency. 

The objective is to enable the collection of sensors’ 

data at low frequency without compromising the 

accuracy of the results. This will save battery-time 

of the smartphone and will yield lesser data points 

hence reducing the computational cost of the whole 

process. It can be argued that since smartphones are 

charged daily, even on the go, there is no need to 

save battery-time by reducing data collection 

frequency.  

While this is true when respondents are 

handpicked and given this particular task, on a 

much larger scale it would be difficult to convince 

general public to run a data collection application, 

even for a single day, that affects battery time. 

Studies with similar objectives have been carried 

out by other researchers as well [4]. This is the 

extension of our previous work [20], which only 

studied the change in data collection frequency. 

Table 1: Selected studies using Accelerometer, GPS and Gyroscope 

Study Algorithm(s) 

Sampling 

frequency 

(Hz) 

No. of 

Participants 

Accuracy 

(%) 

[15] Support Vector Machine 50 4 93.88 

[8] Neural Network 0.25 - 91.23 

[26] 

Decision tree 

Naïve Bayes 

k-Nearest Neighbor 

Support Vector Machine 

36 4 90.6 

[16] 
Naïve Bayes 

Support Vector Machine 
38 - 97 

[18] 
Decision Tree followed by 

discrete Hidden Markov Model 
1 16 93.6 

[11] 

Decision tree 

Logistic regression 

Multilayer Perceptron 

20 29 91.7 

[9] AdaBoost 60, 100 16 84.9 

[28] 

Support Vector Machine 

AdaBoost 

Decision tree 

30 74 92.5 

[25] Support Vector Machine 50 18 96.31 

[22] Rule-based algorithm 1 30 82.05 

[31] Chained Random Forest - 12 93.8 

[7] Multinomial Logit Model 1 1967 90 
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2. Data Collection and Preparation 

Smartphones were used by 50 participants 

from Kobe city, Japan, to collect travel data over a 

period of one month, while using six different 

modes of transportation namely walk, bicycle, car, 

bus, train and subway. The collected data consisted 

of accelerometer and gyroscope readings. It was not 

compulsory for the participants to collect data for 

the entire month. Consequently, the number of days 

for data collection varied among the participants 

ranging from one day to several days and even the 

whole month. This explains the relatively small 

amount of data used in this study, in contrast to the 

amount expected from a month long collection 

process. For each trip recorded, the actual mode of 

transportation used was registered, by the 

participants, using the smartphone application. The 

saved data was verified by recall surveys and 

rechecked with the help of web generated travel 

maps. After verification, the collected data served 

as the ground truth for assessing the performance of 

the classification methodology developed later. The 

sensors’ data was recorded at an average frequency 

of 14 Hz, which was scaled down to a uniform 10 

Hz frequency. Table 2 provides the amount of data 

and the number of trips for each mode, used in this 

study. 

2.1 Data Frequency 

The data frequency was further decreased 

from 10 Hz in order to check the effect of low 

frequency on the accuracy of the methodology. The 

original frequency of 10 Hz (0.1 sec) was reduced 

to 4 Hz (0.25 sec), 2 Hz (0.5 sec), 1 Hz (1 sec), 0.5 

Hz (2 sec), 0.33 Hz (3 sec), 0.25 Hz (4 sec), 0.2 Hz 

(5 sec), 0.167 Hz (6 sec), 0.143 Hz (7 sec), 0.125 

Hz (8 sec), 0.111 Hz (9 sec), 0.1 Hz (10 sec), 0.091 

Hz (11 sec), 0.083 Hz (12 sec), 0.077 Hz (13 sec), 

0.071 Hz (14 sec) and 0.067 Hz (15 sec). The 

frequency could not be decreased any further for the 

given dataset, as the resulting amount of data, 

available for computation, would be substantially 

low. In the previous study, the frequency was 

decreased down to 0.2 Hz only [20]. IPhone 5s was 

used to understand the strength of relationship 

between battery usage and data collection 

frequency. The battery was completely consumed 

in approximately 3 hr. 23 min. for 10 Hz frequency, 

whereas it took roughly 11 hr. 32 min. for 0.067 Hz 

frequency. For the intermediate frequencies, battery 

time will most likely vary non-linearly with a steep 

increase in battery consumption near to high 

frequency end. 

 

2.2 Pre-Processing 

From the accelerations along three axes, 

magnitude of resultant acceleration was calculated 

[16, 22, 25, 27], using the following equation (1). 

This was done to incorporate any position in which 

the smartphone might be stored during travelling.  

𝐴𝑐𝑐𝑅 = √𝐴𝑐𝑐𝑋
2 + 𝐴𝑐𝑐𝑌

2 + 𝐴𝑐𝑐𝑍
2        (1) 

Following the result concluded by Shen and 

Stopher [21] after testing dwell times ranging from 

15 seconds to 120 seconds, a dwell time of 60 

seconds was used to segregate the data into trips 

[20]. This was done for all the data collection 

frequencies. The trip segmentation was not 

intended to be in strict accordance with the actual 

trips recorded.  

One trip by a single mode might be broken 

down into two or more individual trips when trip 

segmentation is applied. The idea was to divide the 

data into trips covering only a single mode each, 

when no information is available regarding the 

actual trip lengths. This is particularly important 

when the data for the entire day is uploaded onto 

the server and the resulting Excel CSV file does not 

contain any information regarding trip 

segmentation. Note that trip segmentation was done 

for already known trips. The various trips recorded 

during the survey were known but they were treated 

as a continuous stream of readings and trip 

segmentation was performed to divide the data into 

probable trips.  

Table 2: Amount of data recorded by smartphones 

Mode 
No. of 

trips 

Total 

Time 

(hours) 

Amount of 

data 

instances 

Walk 442 144 5,186,095 

Bicycle 10 9 326,500 

Car 31 14 500,410 

Bus 21 11 381,698 

Train 45 18 659,528 

Subway 10 7 236,738 

Total 559 203 7,290,969 
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2.3 Feature Extraction 

A moving window size of 10 minutes was 

used to calculate additional features (see [20]). 

From resultant acceleration, six features were 

extracted namely maximum resultant acceleration, 

average resultant acceleration, maximum average 

resultant acceleration, standard deviation, skewness 

and kurtosis. Apart from these, pitch and roll 

recorded by gyroscope were also used. Instead of 

combining these readings with the accelerometer 

data, it was expected that the algorithm would 

develop a relationship for them. Therefore, the 

gyroscope readings were used directly as features 

in the algorithm, without any processing done.  

2.4 Amount of Learning Data 

Stratified bootstrapped sampling was used to 

divide the collected data into 10 almost equal parts. 

This means that each part contained 10% of data 

from each mode randomly selected without 

replacement. Normally, in a 10-fold cross-

validation, nine folds are used to test the remaining 

one fold on each run. On the contrary, this study 

applies cross-validation in a way that on each run 

one part of the data is used to train the algorithm 

and the remaining nine parts are then tested. The 

aim was to use only 10% of data for training 

purpose [20]. This was the reason for dividing the 

data into ten parts and further using one part instead 

of nine during cross-validation. At the end of 10 

runs, each part has been used once to predict the 

remaining parts. The average is then calculated and 

reported as the result. The results reported hereafter 

are all 10-fold cross-validated. 

3. Classification Algorithm 

The first task was to determine the 

appropriate classification algorithm to be used for 

mode detection. The algorithms to be compared 

were selected based on their repeated use by other 

researchers and their good performance in 

numerous comparative studies [19]. A 

comprehensive comparison among the algorithms 

is provided in Table 3. Here it can be seen that 

boosted decision trees provide the highest 

prediction accuracy but falls behind in terms of 

computational time. Although, the accuracy 

achieved by random forest is slightly lower than by 

boosted decision trees, the computation is very 

quick making it a better option, especially when the 

data is huge. Decision trees are very quick but the 

prediction is not very accurate. Support Vector 

Machine (SVM) is the most time-consuming 
classifier, with accuracy even lower than decision 

trees. Neural network and Naïve Bayes come last in 

the list. These results are specific to the dataset used 

and might change for different datasets. It is clear 

from the results that for this particular dataset, the 

performance of tree-based algorithms is much 

better than the other algorithms. Reasons include 

robustness, suitability for large datasets and 

simplicity. They do not require the data to be 

normalized. 

4. Detection Accuracy for Various 
Data Collection Frequencies 

After it was established that random forest 

was a better algorithm for the collected data, it was 

employed to calculate the detection accuracies for 

the range of data collection frequencies discussed 

earlier. Table 4 provides all the results. It can be 

seen that for high frequency, the detection accuracy 

is impressively high but as the frequency is 

decreased, the accuracy also decreases. High 

frequency means that the battery of smartphone will 

be exhausted quickly. In order to make the 

methodology acceptable, low data collection 

frequency should be used. Therefore, the 

methodology was modified to refine the results 

further for low frequencies, as discussed in 

subsequent sections. 

5. Problem of Imbalanced Data 

The collected data is highly imbalanced 

when it comes to individual modes. More than 70% 

of the data is associated with only one mode i.e. 

walk. Due to this imbalance, the predicting ability 

of random forest becomes bent more towards the 

majority class. Consequently, the prediction 

accuracy for that class is relatively higher than other 

classes, and even worse, is the decrease in accuracy 

of other classes due to misclassification as the 

majority class. Two methods were employed to 

improve the detection accuracy by addressing the 

problem of imbalanced data. 

5.1 Down Sampling 

In random forest, a subset of the training data 

is randomly selected with replacement, to grow 

each tree. Due to highly imbalanced data, it is likely 

that the data used for growing a certain number of 

trees lack representation from all the classes. In 

some others, the representation by minority classes 

might not be adequate. All this will result in poor 

decision trees being formed. 

These poor trees will mostly classify the test 

data in favor of the majority class and will therefore 

drive the voting system to misclassify the data. The 

problem of imbalanced data has been tackled by 

various researchers.  
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Table 3: Comparison among Classification Algorithms 

Mode 

Prediction Accuracy (%) 

Naïve 

Bayes 

Neural 

Network 

Support 

Vector 

Machine 

Decision 

Tree 

Boosted 

Decision 

Tree 

Random 

Forest 

Walk 64.89 95.85 99.29 94.74 98.98 99.25 

Bicycle 63.00 58.17 54.18 69.90 80.72 78.07 

Car 13.29 31.23 43.70 48.29 70.80 64.68 

Bus 75.56 51.65 64.36 62.42 75.07 72.05 

Train 1.45 23.18 38.73 46.33 63.43 54.51 

Subway 10.45 33.37 43.42 49.20 63.77 54.32 

Overall 54.49 79.07 84.57 83.07 90.75 89.16 

Time (sec) 15.25 13.64 61.59 0.49 65.71 5.4 

In one study, authors selectively down-sized 

the majority class by using one-sided sampling 

technique [10]. In another study, over-sampling of 

the minority class by replication was done, to attain 

data size comparable with the majority class Ling 

and Li [12]. Both down-sampling and over-

sampling were incorporated in a study to achieve 

better classification results Chawla, et al. [6].  

As it is already mentioned that in random 

forest, under default conditions, about 63% of the 

learning data is randomly selected each time a tree 

is grown. Therefore, if the amount of sampling is 

reduced for any class, the information is not lost. 

For instance, if the sampling amount for the 

majority class is reduced from 63% to 30%, even 

then the random sampling will be done from the 

entire dataset, each time a decision tree is grown. 

Therefore, down-sampling the majority class is a 

suitable option for random forest. A threshold value 

of mean (1162 for 15 Hz) was used for down 

sampling. Any mode having data amount less than 

the threshold value was 100 % taken for each tree 

whereas modes having data amounts greater than 

the threshold value were randomly selected equal to 

the threshold value. 

5.2 Weighted Random Forest 

In the second method, Random Forest was 

modified a little to accommodate, to some extent, 

the imbalanced data on its own. Random forest was 

applied to the imbalanced data as usual but the 

result was not concluded from the usual voting 

procedure. Rather, the probabilities of each mode 

were multiplied with the weights, computed for 

each mode from the distribution of data, to attain 

the weighted probabilities. The voting was then 

done using the weighted probabilities and the mode 

having the maximum probability was concluded as 

the final prediction. 

The weights (W) depend on the data size of 

each class used to train random forest and were 

calculated as follows. 

𝑊𝑖 = 0.5 +
𝐷𝑚𝑖𝑛

𝐷𝑖
                      (2) 

Where 

𝑊𝑖 = Weight for class 𝑖 

𝐷𝑖 = Data size of class 𝑖 

𝐷𝑚𝑖𝑛 = Minimum data size among all classes 

5.3 Detection Results 

Table 5 provide the detection results after 

applying down sampling, and using weighted 

random forest respectively. It is evident that 

weighted random forest performs better than down 

sampling. 

6. Post-Processing 

A 2-step post-processing technique was 

introduced. The first step was same as the error 

correction by voting suggested by Yu, et al. [28]. 

Rather than using four as the upper bound value, 

five was found to be a better value for the collected 

data. 
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Table 4: Detection Accuracy (%) for various Data Collection Frequencies 

Mode 
Time interval between readings (sec) 

0.1 0.25 0.5 1 2 3 4 5 6 

Walk 99.99 99.98 99.96 99.91 99.84 99.76 99.67 99.63 99.58 

Bicycle 99.95 99.81 99.52 98.82 97.14 95.39 93.65 89.71 89.56 

Car 99.84 99.68 99.04 97.75 95.22 92.33 89.15 85.97 83.88 

Bus 99.92 99.73 99.16 97.45 94.28 91.95 87.34 87.21 84.93 

Train 99.85 99.51 98.84 96.51 92.2 86.88 83.17 78.94 74.72 

Subway 99.72 99.21 98.25 95.01 89.79 84.35 78.42 74.83 71.51 

Overall 99.95 99.87 99.68 99.13 98.11 97.01 95.89 94.98 94.19 

Time 6975.6 2430.59 982.76 438.65 206.53 136.31 98.9 78.29 65.35 

Mode 
Time interval between readings (sec) 

7 8 9 10 11 12 13 14 15 

Walk 99.52 99.48 99.38 99.41 99.3 99.32 99.33 99.13 99.25 

Bicycle 87.96 85.57 83.28 85.73 81.9 80.82 81.01 81.82 78.07 

Car 81.1 78.77 76.44 73.72 72.53 70.23 68.63 68.36 64.68 

Bus 82.83 80.84 78.47 78.6 77.06 75.71 74.29 73.54 72.05 

Train 71.22 69.13 65.95 62.98 61.06 59.39 57.78 56.51 54.51 

Subway 67.58 64.45 61.65 60.61 61.53 58.73 56.86 58.37 54.32 

Overall 93.35 92.66 91.85 91.49 90.96 90.46 90.09 89.87 89.16 

Time 55.82 48.12 42.12 37.86 33.82 30.84 28.41 26.03 24.15 

In the second step, the travel mode predicted 

for the maximum instances within each trip is 

assigned to all the instances in that trip. This is done 

assuming that within each trip, the travel mode is 

not changed. This way further refinement is 

induced. In order to apply both steps, the data has 

to be in the original order. Therefore, the training 

data was also included as it was randomly selected 

from the collected data. The post-processing 

methodology is explained in Table 6 by using an 

example data of two trips covering only two modes 

i.e. car and bus. In the example, when predictions 

from the classification algorithm are compared with 

the ground truth already available, it is revealed that 

the algorithm misclassifies four instances in total, 

two in each trip. During the first step, votes are 
calculated in a way that for each predicted mode, 

one vote is added (if total votes for that mode are 

less than 5) and one vote is subtracted from the 

other mode (if total votes are greater than 0). The 

mode with the maximum votes is taken as the 

corrected prediction at each instance. The 

misclassifications are reduced from four to two. In 

the second step, the majority mode in a trip is 

assigned to all the instances of that trip. Table 7 

provides the results for weighted random forest 

followed by post-processing. 

7. Trip-wise Results 

The results provided in table 7 demonstrate 

point accuracy. When translated into trip accuracy, 

it is observed that out of 639 segmented trips 

(different from recorded trips - 559) 10 trips were 

not correctly divided by 60 second dwell time 
criteria and consequently covered more than one 

mode.  
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Table 5: Detection Accuracy (%) after applying Down Sampling, and Weighted Random Forest 

Down Sampling 

Mode 
Time interval between readings (sec.) 

5 6 7 8 9 10 11 12 13 14 15 

Walk 96.23 96.18 95.31 94.63 93.42 93.64 92.73 92.25 92.36 91.81 91.31 

Bicycle 95.06 94.88 93.75 93.43 91.77 92.06 90.62 90.78 89.23 90.47 86.54 

Car 93.82 92.80 92.01 90.76 89.65 88.30 87.27 87.19 85.45 85.62 83.85 

Bus 92.98 91.89 90.63 89.28 87.30 88.00 86.96 85.94 84.57 84.26 83.25 

Train 91.00 89.15 87.70 86.27 84.37 82.40 81.62 79.61 79.17 77.71 76.43 

Subway 86.33 85.10 81.39 79.51 76.03 76.00 76.22 73.37 74.73 72.27 71.10 

Overall 95.07 94.69 93.65 92.81 91.42 91.35 90.46 89.79 89.61 89.06 88.21 

Time 66.1 54.5 46.7 40.2 35.5 32.5 29.6 27.9 25.3 22.9 21.4 

Weighted Random Forest 

Mode 
Time interval between readings (sec.) 

5 6 7 8 9 10 11 12 13 14 15 

Walk 98.66 98.59 98.38 98.09 97.79 98.01 97.51 97.5 97.56 97.21 97.18 

Bicycle 95.18 94.24 93.48 92.39 90.22 91.13 89.32 88.16 88.31 89.32 85.64 

Car 91.59 89.93 87.69 86.31 85.51 82.90 81.28 80.40 78.66 78.70 76.06 

Bus 92.12 90.54 89.00 87.97 85.16 86.23 84.02 83.18 80.78 80.57 80.47 

Train 84.76 81.76 78.77 76.86 74.26 71.59 68.88 67.80 66.89 63.83 63.20 

Subway 87.93 84.79 82.09 79.62 75.91 75.41 75.49 73.84 73.04 70.91 70.60 

Overall 96.10 95.45 94.68 94.03 93.17 92.99 92.09 91.78 91.49 90.94 90.51 

Time 653.2 466.4 352.3 273.9 226.7 189.6 162.6 140.9 124.3 110.7 99.2 

 

Due to second step of post-processing, these 

10 trips were identified to belong to the majority 

mode and hence some percentage of 

misclassification was introduced. 

Apart from the 10 problematic trips, the rest 

629 trips are shown in Table 8. Due to 10-fold 

cross-validation, the entire data was predicted 10 

times, each time using a different 10% training data. 

Due to this methodology, a slight misclassification 

can tilt the balance and result in misclassification of 

the entire trip. Consequently, the table shows the 

number of folds or the number of cycles the trip was 

correctly predicted. 

A prominent difference between results for 5 

second data and 15 second data can be witnessed 

where the number of trips incorrectly predicted is 

more in case of 15 second data. Note that a lower 

number of folds correctly predicted does not 

necessarily mean that the methodology is faulty or 

the prediction accuracy is nil. At the same time, it 

is obvious that point based accuracy alone does not 

fully reflect the prediction capability of the 

developed methodology.  
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Table 6: Example of Post-Processing Method 

Trip 

No. 

Ground 

Truth 

Prediction by 

Algorithm 

Step 1 

Step 2 Voting 
Correction 

Car Bus 

1 

Car Car 1 0 Car Car 

Car Car 2 0 Car Car 

Car Car 3 0 Car Car 

Car Bus 2 1 Car Car 

Car Bus 1 2 Bus Car 

Car Car 2 1 Car Car 

Car Car 3 0 Car Car 

2 

Bus Bus 2 1 Car Bus 

Bus Bus 1 2 Bus Bus 

Bus Bus 0 3 Bus Bus 

Bus Bus 0 4 Bus Bus 

Bus Bus 0 5 Bus Bus 

Bus Car 1 4 Bus Bus 

Bus Car 2 3 Bus Bus 

Table 7: Detection Accuracy (%) using Weighted Random Forest and Post-Processing 

Mode 
Time interval between readings (sec.) 

5 6 7 8 9 10 11 12 13 14 15 

Walk 99.72 99.73 99.77 99.68 99.81 99.82 99.84 99.84 99.83 99.82 99.83 

Bicycle 99.65 99.09 99.21 99.33 97.99 98.67 97.99 98.39 95.72 97.27 97.01 

Car 99.26 98.69 98.65 97.57 97.10 96.03 94.80 96.29 94.01 94.88 92.66 

Bus 88.81 88.30 86.80 87.95 85.69 86.15 84.99 84.87 81.59 83.16 83.01 

Train 96.45 95.33 93.88 92.19 89.14 85.64 81.53 82.30 79.66 75.35 75.01 

Subway 98.17 96.73 96.78 93.85 88.96 88.53 87.91 80.07 82.99 79.36 76.44 

Overall 98.78 98.55 98.37 98.06 97.52 97.18 96.63 96.57 95.97 95.68 95.40 

Time 1030.5 750.3 598.5 473.5 394.4 336.6 291.7 256.0 228.4 205.2 185.9 

Further, a limitation of post-processing 

method is visible from the results. Because of 

taking the statistical mode for the entire trip that is 

pre-dominantly misclassified, the percentage of trip 

correctly predicted is also misclassified. This 

decreases the overall accuracy. Further it can be 

observed that lesser amount of data tends to slightly 

increase the misclassification, making the 

methodology quite sensitive to the training dataset. 

It is one of the limitations of this approach and will 

be addressed in future studies. 

8. Conclusion and Future Work 

A number of conclusions can be drawn from 

this study. To start with, selection of an appropriate 

classification algorithm is vital for accurate 

classification results. Comparison among various 

algorithms demonstrate that boosted decision tree 

provides the highest detection accuracy closely 

followed by random forest but the computational 

cost is much high when compared to random forest.  
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Table 8: Number of Trips correctly predicted 

Time interval 

(sec) 
Mode 

Number of folds correctly predicted 

10 9 8 7 6 5 4 3 2 1 0 

5 

Walk 503 2 2 0 0 0 1 0 0 0 0 

Bicycle 8 0 0 1 0 0 1 0 0 0 0 

Car 26 3 1 1 0 0 0 0 0 0 0 

Bus 17 0 0 0 0 0 0 3 0 0 3 

Train 30 1 1 2 2 1 1 1 0 1 2 

Subway 11 2 2 0 0 0 0 0 0 0 0 

Total 595 8 6 4 2 1 3 4 0 1 5 

15 

Walk 501 3 2 1 0 0 0 1 0 0 0 

Bicycle 6 2 0 0 0 0 0 0 2 0 0 

Car 15 3 0 1 2 5 1 2 0 0 2 

Bus 9 2 4 0 0 0 0 1 1 3 3 

Train 5 4 0 1 4 5 2 5 4 5 7 

Subway 3 1 1 0 3 2 1 1 1 2 0 

Total 539 15 7 3 9 12 4 10 8 10 12 

 

Consequently, random forest is deemed more 

feasible. The detection accuracy is greatly affected 

by the data collection frequency. The accuracy 

decreased with decrease in frequency. Slight 

improvement can be achieved for imbalanced data 

by using weighted random forest instead of random 

forest. 

The two-step post-processing method can 

further refine the results. Overall accuracy for 0.2 

Hz frequency data is improved from 94.98% to 

98.78%, whereas for 0.067 Hz frequency, the 

increase is from 89.16% to 95.40%. Due to 

decreasing the data frequency from 0.2 Hz to 0.067 

Hz, a minute drop of 3.42% in prediction accuracy 

is observed. This decrease in accuracy is negligible 

as compared to 81.96% decrease in processing 

time. Trip-wise analysis suggested that apart from 

10 trips incorrectly divided by 60 seconds dwell-

time criteria, the mode detection accuracy for entire 

trips is quite reasonable with only 5 completely 

misclassified trips for 5 sec data and 12 completely 

misclassified trips for 15 sec data, out of 629 trips. 

The aim of this study was to achieve a 

considerable amount of accuracy while decreasing 

the data collection frequency, which in turn would 

decrease the overall processing cost as well as the 

battery consumption of the smartphones. The 

precise effect of data collection frequency on 

battery time is not investigated in this study. This 

part should be explored in order to validate the 

hypothesis formed in this study. Variation in battery 

consumption in different mobiles should also be 

investigated. Although, the results are promising 

for the collected data, the methodology should be 

tested for other datasets too. Similarly, the 

developed approach should also be tested against 

methodologies available in literature, using a 

common dataset. Battery consumption can be 

further decreased by employing a clever 

mechanism to record data at varying frequencies 

(e.g. higher frequency when movement is detected). 
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