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Abstract 

This paper explains the implementation of a load scheduling technique developed to schedule the 

electric vehicles (EVs) charging and discharging using optimal control in the distributed power 

network. We have assumed that the power flow between EVs and the utility grid is multi-directional, 

i.e., EV can supply power to grid in reverse as the distributed energy source as well as it could be 

charged from the grid, this phenomena is known as vehicle to grid (V2G) system. The optimal load 

scheduling algorithm has been developed as a varied discrete program (VDP) constraint, which is NP-

hard and extremely complex to compute. Therefore, to overcome this complexity we have proposed a 

technique to compute the VDP constraint by altering the basic load profile curve of the night hours, 

and designed a distributed algorithm to reiterate water-filling. This algorithm executes in the 

distributed manners and effectively schedules EVs charging/discharging in local areas where the 

aggregation structure is already established. Owner’s security enhancement and reduced 

computational load are the major benefits of our proposed algorithm; the performance of this 

algorithm is verified by simulations. 

Key Words: Smart grid, Distributed Control, Load Diversion, Optimum Load scheduling, 
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1. Introduction

Due to massive release of greenhouse gasses 

(GsG) and consistently depleting fossil fuel 

reserves, it is anticipated that the survival of future 

generations will be very difficult due to growing 

ecological pollution and without conventional 

energy resources. Therefore, it is considered that 

renewable resources and electric vehicles (EVs) are 

the best alternative of conventional power 

generation means and internal combustion engine 

vehicles (ICEVs) [1]. Despite of severe 

atmospheric disadvantages, the fossil fuels are 

more expensive than electricity, which immensely 

affects the economy of developing countries. It is 

projected that EV numbers will increase rapidly in 

the near future, because it exhibits better efficiency 

than a ICEV car [2].  

Although, the growing use of EV will 

severely affect the reliability of the power grid. The 

random EVs charging could increase the load in 

peak hours, or it can disturb the prevailing power 

demand. Consequently, it can cause severe 

destruction within the power grid, as well as 

damaging the household appliances [3]. 

Conversely, by using the demand side management 

(DSM) technique we can intelligently schedule 

EVs charging by considering the needs of each 

stakeholder connected to the power grid. This can 
be achieved by the installation of autonomous 

DSM based charging stations, advance metering 

setups, and by deploying efficient communication 

means [4]. 

Massive research has been carried out to 

upgrade EVs interior for DSM collaboration. It 

depends on which direction the power is flowing 

between EVs and grid. The contemporary carried 

out research might be divided into two 

classifications, 1) accommodation of those EVs 

who are just charging and only availing grid to 

vehicle (G2V) facility, 2) research about 

facilitating those EVs who are using both G2V and 

V2G facility. In [5]-[10], multiple algorithms have 

been formulated to schedule EVs charging to 

implement G2V. In [5], researchers created a 

charging constraint as limited time horizon vibrant 

game, and proposed a scattered charging method.  

In [6] an inclusive investigation for load 

shifting constraints has been carried out using EVs, 

in this research, an optimal distributed algorithm 

has been proposed. In [7]-[9], multiple concept of 

distributed algorithm are illustrated, mainly use 

non-centralized water filling technique, to stabilize 

the demand profile for low power transformers to 

attain the best scheduling for EVs charging. In 

these approaches, network controlled EVs have 

been penetrated to regulate the grid supply in an 

American state with the mixture of renewable 

resources using the phenomena of consistently 
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varying electricity prices [10]. In [11], autonomous 

power inverters for V2G enabling EVs are used to 

supply energy in return to the grid, this study 

allowed researchers to deploy both V2G and G2V 

systems.  In [12], authors are intended to reduce 

the EVs aggregation cost. Therefore, they have 

proposed an optimal load scheduling algorithm for 

both global and local load management, which can 

efficiently manage the random charging of multiple 

EVs beside it can level the load curve for 

conventional households. In [13], an optimal 

programming based charging/discharging 

scheduling algorithm is proposed, which controls 

uncertainties of renewable power production in 

smart grid. In [14], a stochastic process is deployed 

to reduce the known management cost of the grid 

considering the arbitrary EVs actions. In [15], 

researches regulated the overall load demand of 

multiple households along with managing the 

entire grid using EVs by deploying efficient load 

aggregation models. In [16], a dynamic central 

load scheduling technique is proposed to 

simultaneously manage the EVs and household 

power consumption, which enhances the 

sustainability and reliability of the smart grid.  

A smart grid is a vibrant and consistently 

expanding network, which could not be controlled 

by penetrating a centralized algorithm, because it is 

impossible to attain exact information about each 

and every part of the power grid in real time, which 

usually occurs due to massively growing renewable 

penetration, therefore the scalability and 

information analysis of the global power networks 

is becoming difficult. Thus, the distributed 

management is the alternate solution to overcome 

these constraints [17]. By using modern 

technologies it is leniently possible to deploy 

distributed algorithm to manage the grid, this grid 

managing approach is also enforced by various 

researches. Normally, besides the viability and 

advantages of broader implementation of 

optimization techniques, the incentives of 

distributed algorithm have been analyzed by 

comparing the results with centrally optimized 

networks to check the robustness, reduction in 

communication burden, optimization of the load 

constraints, as well as enabling the stable flow of 

energy between stakeholders [18].  

In articles [19] and [20], authors have 

proposed different models for controlling grid 

operations and introduced charging scheduling 

schemes for battery swapping stations. As 

analyzed, although in these studies the 

optimization constraints related to real time and 

day-ahead scheduling have been effectively 

analyzed and these research studies have 

successfully developed the charging optimization 

techniques suitable for single charging stations or 

for a solo aggregator, but the optimization scheme 

for interactively connected numerous charging 

stations is missing. In ref [21] authors have 

developed an optimal scheduling algorithm for 

distributed EVs charging by deploying valley 

filling technique, and in article [22] author further 

expended the deployment of electric vehicles as a 

demand side management tool, which is generally 

considered as future of the power grids 

optimization where higher penetration of 

renewable power generation is anticipated. In ref 

[23], researcher proposed a local power managing 

scheme and defined an optimization strategy which 

efficiently coordinates with scattered EVs and 

manage their charging and it also controls the 

operation of battery switching stations. In ref [24], 

authors identified a robust charging constraint for 

plugged-in E-taxis which are anticipated as future 

of public transportation this constraint contains 

time anecdotal profits. In ref [25] a real time 

charging scheduling scheme for managing EVs 

aggregation process has been proposed to make 

EVs a permanent part of the energy markets.  

In ref [26], [27], authors mainly focused to 

model schemes used to control uncertainties of the 

day-ahead markets while assuming that the short-

term price forecasts in real time markets are 

precise. Although, these EVs charging scheduling 

schemes and optimization problems ignore the 

existing grid models and neglect their operational 

constraints, therefore, achieved results are 

potentially impractical. Practically the optimal EVs 

charging scheduling problems for mega charging 

stations could be formulated as an optimum-power-

flow (OPF) problem having diverse objectified 

functions in a power distribution network to 

precisely counter the operational constraints. In 

[28] a study about the impact of vehicle to grid 

integration on voltage management in the existing 

distribution grids has been carried out. In [29], 

author propose an EV charging scheduling problem 

as a retreating horizon optimization model, the 

main objective of this model is to divert the EV 

charging from peak to off-peak hours. Several 

optimization model for instance linear optimization 

model which uses linear programming has been 

proposed in ref [30], in addition the particle swarm 

optimization has been proposed in [31] which work 

efficiently while coping network optimization 

constraints. Ref [32], [33], presents the most recent 

studies about convex relaxation models used to 

formulate the OPF optimization problem under 

precise relaxing scenarios. The following 

relaxation models are able to generate concise 

solutions for the actual formulations which are 
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globally optimal and have the frequent 

computational capabilities, especially for those 

distribution networks where relaxation accuracy 

could be achieved leniently 

The highly esteemed success and fame of 

EVs has been anticipated in the upcoming decade, 

in this research, we have developed an autonomous 

load diverting method for night hours by 

employing both V2G and G2V enabling EVs. 

However, previous work, i.e. [12], also illustrates a 

distributed load scheduling technique by 

penetrating both V2G and G2V concepts, we 

appreciate these researchers approach, since this 

research article is the first one introduces the 

concept of stabilizing the load demand curve by 

utilizing optimum solutions, it configures the 

multi-directional power dispatch through 

decentralized algorithm. The main contributions of 

our research paper are as follows;  

• We have developed an optimal load shifting 

constraint as VDP constraint; the basic 

objective of this constraint is to stabilize the 

load curve accordingly satisfying the EV 

charging and discharging requirements. By 

considering the NP-hardness of the optimal 

VDP constraint, we have proposed a robust 

and leniently computable constraint 

estimation technique which efficiently 

forecasts the nominal load demand profile 

curve for the night hours. The actual 

objective of this load profile estimation 

constraint is to divide the total time of a day 

into two distinct time slots through optimum 

time brinks, after implementing this method 

an EV will only charge or discharge 

following the defined schedule.  

• In order to efficiently execute the load 

profile estimation constraint, we have 

proposed an optimal distributed load 

scheduling algorithm, which uses the 

bilateral water filling technique for load 

leveling. It is distributed in such manners 

that an EV performs local load calculations 

itself and individually communicates this 

information to the central control station, in 

order to accommodate the aggregation 

process which also reduces the 

computational burden. We have illustrated 

the brief convergence analysis of the 

proposed model in upcoming sections.  

• The simulation results show that our 

proposed algorithm can efficiently anticipate 

the nominal load demand profile for night 
hours, even when it is projected that 

multiple EVs would be simultaneously 

charging, moreover it can also define 

charging and discharging schedules for EVs 

and it also ensures the information privacy 

for each EV. 

To prove relevancy and effectiveness of the 

proposed algorithm, the simulation results have 

been compared with the existing BONMIN 

method, the intensive performance comparison 

shows that our proposed algorithm exhibits 

extremely fast computation speed. In addition 

extremely complex research comparisons proves 

that, as compared to the BONMIN load scheduling 

method our algorithm can anticipate the load 

demand curve within seconds while BONMIN 

requires hours to perfume similar task. 

This paper is arranged in the following 

manners; Section II, covers the single EV 

optimization model, network formulation, and 

defines the distributed water filling algorithm. 

Section III, explains the estimation of the 

primordial optimization, constraint, and illustrates a 

distributed optimal load scheduling algorithm. 

Section IV presents the simulation results, and 

discusses the performance analysis of the proposed 

algorithm, whereas section V concludes this paper.  

2. Mathematical Model Formulation 

This section covers the initial formulation of 

the dynamic model framework for an individual 

EV and explains the basic structure of the proposed 

constraint besides, the detailed description of the 

distributed water filling based load scheduling 

technique is also given in this section. Note that, 

actually this model is the extension of our 

previously proposed research work [4], [5]. . 

2.1. Dynamic Model Framework for 
an Individual  EV 

We presume that each EV contains Lithium-

ion battery modules which are capable enough to 

perform V2G and G2V operations. Assume 𝑡 =
0 ,1,… represents the time period containing 

multiple sampling intervals  ∆𝑇…. The battery state 

of charge (SOC) at time interval  𝑡 , given by 

𝑒(𝑡)(%), it also denotes the current charge state of 

a battery and defined as; 

 𝑒(𝑡) =
𝐺(𝑡)

𝐺𝑚𝑎𝑥
 (1) 

where 𝐺𝑚𝑎𝑥 is the overall battery capacity in 

(kWh), and 𝐺(𝑡) is the current charging state of a 

battery at time 𝑡.  

Assume 𝑎(𝑡)  represents the energy flow 

from EV to gird in kW. Let’s presume that the 
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charging/discharging ratio of an EV is stable as 

𝑎(𝑡) is in the hiatus form, from 𝑡 to 𝑡 + 1. 𝑎(𝑡) >
0 it shows that an EV is being charged at time 

instant t, and 𝑎(𝑡) < 0 denotes the EV discharging. 

Moreover 𝑎(𝑡) = 0 denotes the absence of energy 

flow from EV to the grid. Thus, we can get the 

following unequal problem;  

 −𝑎−𝑜𝑢𝑡 ≤  𝑎(𝑡) ≤ 𝑎−𝑖𝑛 (2) 

where 𝑎−𝑖𝑛  is the highest power supplied for 

charging an EV, while −𝑎−𝑜𝑢𝑡  is  the highest 

discharging ratio of an EV battery. For G2V 

operation let, multiple EVs are connected to 

intelligent chargers, which are capable enough to 

alter EV numbers from 0 to 𝑎−𝑖𝑛. conversely, for 

V2G operation; various EVs are connected to 

intelligent inverters, which exhibits the capability 

of supplying energy to the grid from EVs with the 

ratio of 0 to −𝑎−𝑜𝑢𝑡.  

We characterize 0 < 𝜂𝑖𝑛, 𝜂𝑜𝑢𝑡 < 1, in order 

to represent the power supplying efficiency of an 

EV during charging/discharging, so that we get the 

updated SOC as; 

 𝜂(𝑡) = {
𝜂𝑖𝑛 < 1,      𝑓𝑜𝑟 𝑎(𝑡) ≥ 0.

𝜂
1
𝑜𝑢𝑡 > 1     𝑓𝑜𝑟 𝑎(𝑡) ≤ 0.

 (3) 

Moreover, to extend the battery life, it is 

proposed that the SOC should remain within 25% 

out of 90% range [33]. Assume that an EV shall be 

disconnected at time interval 𝑇 , then we get 

following problem.  

 
𝑒 ≤ 𝑒(0) + ∆𝑇

∑ 𝜂(𝑡)𝑎(𝑡)𝜏−1
𝑡=0

𝐺𝑚𝑎𝑥
≤ 𝑒,  

𝜏 = 1,⋯ , 𝑇 

(4) 

where 𝑎(0) is the initialization of the EV charging 

outlets at time 0. We have restricted the EV battery 

discharging and charging at 𝑒 = 25% to 𝑒 = 90%. 

An EV owner is capable to select its 

preferred SOC represented by 𝑒∗ this is the desired 

SOC at time slot T. It should be noted that 𝑒∗ ∈

[𝑒, 𝑒] . In this case we can get the following 

homologous problem.  

 𝑒(0) + +∆𝑇
∑ 𝜂(𝑡)𝑎(𝑡)𝜏−1
𝑡=0

𝐺𝑚𝑎𝑥
= 𝑒∗ (5) 

2.2. Constraint Initialization  

In this research, we have only considered 

EVs having the capability of both V2G and G2V 

operations to stabilize the nominal load profile 

curve during the night hours. For simplification, 

we presume that all EVs connect to the grid at 8 

pm (20:00) and disconnects at 8 am in the next 

morning. The nominal demand curve of common 

households (exempting EVs) from 8 pm to 8 am is 

given in Fig. 1.  

The basic power demand is represented by 

𝑃(𝑡), ∀𝑡 = 0⋯𝑇 − 1.  Assume that there are 

𝑐 number of EVs, characterized from 1 to 𝑐. The 

general specifications of an EV as well as the 

charging/discharging amount variables have been 

characterized by 𝑑 = 1⋯𝑐, where 𝑑 illustrates the 

𝑑′𝑡ℎ EV. The variable 𝑋  represents the common 

structural specifications of an EV fleet. The 

optimum load diverting constraint has been 

initialized as presented.  

 𝑚𝑖𝑛∑(𝑃(𝑡) +∑𝑎𝑑(𝑡)

𝑐

𝑑=1

)

2𝑇−1

𝑡=0

 (6) 

• Repression 

-Impartiality repression on 𝑎𝑑(𝑡)′𝑒 

 

 
𝑒𝑑 = 𝑒𝑑(0) + ∆𝑇

∑ 𝜂𝑑(𝑡)𝑎𝑑(𝑡)
𝑇−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥

= 𝑒𝑑
∗ , ∀𝑑.  

(7) 

 -disparity repression on 𝑎𝑑(𝑡)
′𝑒 

 −𝑎𝑑
−𝑜𝑢𝑡 ≤ 𝑎𝑑(𝑡) ≤ 𝑎𝑑

−𝑖𝑛,      ∀𝑑, 𝑡 (8) 

 -disparity repression on 𝑒𝑑(𝑡)
′𝑒 

 𝑒 ≤ 𝑒𝑑(𝑡) ≤ 𝑒,      ∀𝑑, 𝑡. (9) 

 -discrete repression on 𝜂𝑑(𝑡)
′𝑒 

 

𝜂𝑑(𝑡)

= {
𝜂𝑑
𝑖𝑛 < 1          𝑓𝑜𝑟 𝑎𝑑(𝑡) ≥ 0,

𝜂
𝑑

1
𝑜𝑢𝑡 > 1         𝑓𝑜𝑟 𝑎𝑑(𝑡) < 0,

 
(10) 

 

Assertion 1: We have analyzed that the particular 

load scheduling constraint which has been executed 

using formulations (6)-(10) is the optimization 

integer which does not only consider  𝑎𝑑(𝑡)
′𝑒 

besides, it also inherits  𝜂𝑑(𝑡)
′𝑒. Since, 𝜂𝑑(𝑡)

′𝑒 can 

only inherent discrete values, whereas  𝑎𝑑(𝑡)
′𝑒 

could work on continuous values, note that the 

formulations (6)-(10) are the VDP constraints. In 

total there are just 3cT optimization integers. 

Although, if we only consider charging constraint, 

i.e. the task completion in [5], then 𝜂𝑑(𝑡)  is a 

constant integer, parallel to 𝜂𝑑
𝑖𝑛 ,  which is not 

permitted to change.  
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Our objective is to manage the optimum 

load shifting in a distributed network with the help 

of aggregator. It is assumed that the aggregator is 

forecasting the basic load demand before 24 hours. 

The communication medium between aggregator 

and EVs is the star network, in which the 

aggregator has the central node, while EVs are 

connected through tree leaf nodes. All EVs 

perform two way communications with the 

aggregation center. By implementing our proposed 

algorithm an aggregator will have the leverage that 

it is not compulsory to be computationally strong, 

since the computational burden will be consistently 

shared with the EVs which are scattered. 

Moreover, as aforementioned it is not essential for 

an aggregator to have all the specifications 

information about each EV, so that the owners' 

privacy is ensured.   

2.3. Water Filling based 
Decentralized Algorithm 

Before illustrating the proposed algorithm 

for scattered EVs scheduling, initially we will 

enlighten our previously proposed algorithm which 

works on water filling technique [5]. 

Diverse from (2), the disparity repression 
used for EVs in [5] is as follows;  

0 ≤ 𝑎𝑑 ≤ 𝑎𝑑
𝑖𝑛    ∀𝑑, 𝑡. 

 

Fig 1: Basic load profile of 100 house-holds 

served in California Edison region from 

20:00 on September 10, 2018 to 8 am 

September 11, 2018 [24] 

In case, if owners have leverage to select 

SOCs according to their own requirements, then 

the Impartiality repression is equal to (5). 

𝑒𝑑(0) + 𝜂𝑑
𝑖𝑛∆𝑇

∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑑

∗ ,      ∀𝑑. 

The tariff function is similar to (6), and the 

integral constraint initialization is represented as; 

𝑚𝑖𝑛  ∑(𝑃(𝑡) +∑𝑎𝑑(𝑡)

𝑐

𝑑−1

)2,

𝑇−1

𝑡=0

 𝑒. 𝑡.  0 ≤ 𝑎𝑑

≤ 𝑎𝑑
𝑖𝑛    ∀𝑑, 𝑡. 

    
𝑒𝑑(0) + 𝜂𝑑

𝑖𝑛∆𝑇
∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥

= 𝑒𝑑
∗ ,      ∀𝑑. 

(11) 

Defining the projected map 

 Γ𝑑[𝑟] = {
𝑎𝑑
−𝑖𝑛      𝑟 > 𝑎𝑑

−𝑖𝑛       

𝑟             0 ≤ 𝑟 ≤ 𝑎𝑑
−𝑖𝑛

0            𝑟 < 0              

 (12) 

 
Algorithm 1: Distributed Water Filling  

 Requisites: 𝑎𝑑
−𝑖𝑛 , 𝑒𝑑(0), 𝑒𝑑

∗ , ∈ 𝑎𝑛𝑑 𝑃(𝑡), ∀𝑑, 𝑡; 
 Assure: 𝑎𝑑(𝑡), ∀𝑑, 𝑡; 
1. The expected total load forecast shared with 

aggregator 𝑃(𝑡); 
2. for 𝑑 = 0, 1, 2,⋯ , 𝑐 do 

3.  Each aggregator calculates 𝑃𝑖(𝑡) = ∑ 𝑎𝑠 +
𝑑−1
𝑠=1

𝑃(𝑡), ∀𝑡, 𝑑 ≥ 2; 𝑃𝑑 = 𝑃(𝑡), ∀𝑡, 𝑑 = 1; 
4. Aggregator transmits 𝑃𝑑(𝑡)

′𝑒 to the d’th EV; 
5. For d’th EV;  

6. Boot 𝛾
𝑑
= 𝑎𝑑

𝑖𝑛
+𝑚𝑎𝑥𝑑  𝑃𝑑(𝑡) and 𝛾𝑑 = 𝑚𝑖𝑛𝑑𝑃𝑑; 

7.   while 𝛾
𝑑
− 𝛾𝑑 > 𝜖  do 

8.   execute 𝛾𝑑 = (𝛾𝑑 + 𝛾𝑑)/2; 

9.   run 𝑎𝑑 = Γ𝑑[𝛾𝑑 − 𝑃𝑑(𝑡)] and ∑ 𝑎𝑖(𝑡)
𝑇−1
𝑡=0 ; 

10.   upgrade 𝛾
𝑑

 and 𝛾𝑑  accordingly 

{
 
 

 
 𝛾

𝑑
= 𝛾𝑑 𝛾𝑑 = 𝛾𝑑    

𝑓𝑜𝑟 𝜂𝑑
𝑖𝑛∆𝑇

∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥 ≥ 𝑒𝑑

∗ − 𝑒𝑑(0),

𝛾
𝑑
= 𝛾

𝑑
, 𝛾𝑑 = 𝛾𝑑      alternatively;                                      

 

11.    end while 
12. the d’th EV forwards 𝑎𝑑(𝑡)′ to aggregator; 
13. end for  

Since, in the case of smart grid network 

multiple algorithms are being used to reduce the 

chance of complete system failure. We will 

redefine the algorithm proposed in our prior 

research work [5] (Algorithm 1).  

The eventual water level is represented by 

𝛾∗, in fact it has been used to stabilize the  𝛾∗ =
−𝜆∗, here 𝜆∗ is the optimum Lagrange multiplier. 

The altering ∈  has been represented as the 

tolerating difference between higher and lower 

water level that is the tiny positive number. 

Initializing 𝐻 as the figure of bisectional 

requirement, we get;  

 ∈≥ 2𝐻 (𝛾 − 𝛾), (13) 

 or 

 𝐻 ≥ 𝑙𝑜𝑔2 (
𝛾 − 𝛾

∈
) (14) 
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From (14) it could be evaluated that a higher 

∈  intended to produce a severe deviation to the 

eventual result, conversely it minimizes the 

computing period. Regardless of this, a tiny ∈ 

intends to rise the computing period, and it 

increases the preciseness of the proposed 

algorithm. Hence, the strength of ∈ depends on the 

accuracy of different scenarios. In a particular case 

where accuracy is the main priority of an algorithm 

as compared to its efficiency, a higher ∈ is selected 

respectively for more details visit [5]. 

Assertion 2: In [4] we execute the load managing 

constraint by using the charging mechanism of 

EVs. The EVs are connected to smart charging 

points which are only able to accomplish G2V 

task. In such scenario, in [5] just valley filling 

(instead of peak shaving) has been accomplished. 

The algorithm 1 is denoting the water filling model 

due to the eventual result which seems much 

similar to the natural concept of water filling, here 

𝑃(𝑡) is genuinely water surface, whereas 𝛾𝑐 is the 

resultant water level after water filling.  

3. Results  

The following section explains the 

estimation of the primal optimization, constraint 

(6)-(10), which is relative to the proposed 

distributed scheduling algorithm; in addition, we 

have also defined the overview of the convergence 

capability of our proposed algorithm.  

3.1. Constraint Estimation  

This subsection illustrates the estimation of 

the primal VDP constraints (6)-(10). Before going 

into the detailed analysis, initially we examine the 

problems faced by the primal optimization 

constraints (6)-(10) by directly computing the 

projected load profiles.  

• The optimization integer 𝑎𝑑(𝑡)
′ 𝑒within the 

primal optimization constraints (6)-(10) is 

firmly attached, the main reason of the 

following firm attachment is the disparity 

constraint (9). The simultaneous 

charging/discharging of multiple EVs forced 

us to overcome the problems which are related 

to SOCs. Although whenever the alterations 

are the main focus, then the constraint (9) 

turns into redundant, which enable us to solve 

equation (11) leniently.  

• The optimization integers 𝜂𝑑(𝑡)
′ 𝑒  in the 

primal optimization constraint (6)-(10) 

executes during receiving discrete values. To 

resolve the complication caused by the 

discrete integers 𝜂𝑑(𝑡)
′ 𝑒 ; we define the 

constraints (6)-(10) in such manners, that 

these formulations could also be analyzed 

consistently as confined integrating nonlinear 

programming (CINLP) constraint, which is 

NP hard [36]. Further, 𝜂𝑑(𝑡)
′ 𝑒  depends on 

𝑎𝑑(𝑡)
′ 𝑒, hence these are also firmly attached.  

From the aforementioned description, it has 

been proved that it is enormously complex to 

directly compute constraints (6)-(10), nor these 

constraints could be solved using decentralized 

approach, thus these analytics compel us to search 

for a confined and computable estimation for the 

constraints (6)-(10). Since, we are mainly focusing 

on flattering the load profile curve during the night 

hours. Therefore, we recall the statistics of Fig. 1, 

which helps us to evaluate the following core 

features of the basic load curve.  

• 20:00 is the peak demand time. 

• The basic load demand reduces 

monotonously till 4:00 am,  

• Whilst the basic demand is minutely 

raised from 4 to 8 am.  

Several types of load demand data have 

been collected from different authorities and 

institutions, i.e., the real time data in hourly slots 

have been collected from British ISO [34], [35]. In 

addition, the data collected from Midwest ISO 

[36] has shown the same results as shown in Fig. 

1. Hence, it is imperative to explain that the basic 

load demand curve, without EVs in night hours 

flattens the given assumptions as follows;  

Assumption 1; 𝑃(𝑡)  is monotonously 

enhancing [0, 𝑡𝑦] and reaches at its peak value at 

time instance  𝑡𝑦 , Moreover, [𝑡𝑦, 𝑡𝑧], 𝑃(𝑡)  is 

monotonously declining, and gains its highest 

value at time instance 𝑡𝑧 . In [𝑡𝑧, 𝑇], 𝑃(𝑡) which is 

monotonously rising. It should be clear that, in 

Fig.1. the  𝑡𝑦 = 0, and 𝑡𝑧 denotes the lowest load 

demand 

The G2V ability of an EV makes valley 

filling possible, whereas V2G make peak shaving 

possible. It could be interpreted as, we can 

synchronize EVs in such manner that EVs supply 

power to the grid during those periods when the 

basic load demand is at its peak, and it charges in 

those hours when the basic load demand is in 

valley. By such coordination, the load profile 

curve has been stabilized. Since, it is usual that the 

maximum load demand rises before the valley 

demand, therefore we are intended to compute the 

threshold 𝑡† , so that EVs discharges at [0, 𝑡†] and 

charge at [𝑡†, 𝑇] after that it computes the 

optimum load scheduling for EVs 

charging/discharging.  
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We divide 𝑋  set into two subsets 𝑋1  and 

𝑋2 , where 𝑋1 = {𝑑 ∶ 𝑒𝑑(0) > 𝑒
𝑚𝑖𝑛} , and 𝑋2 =

{𝑑 ∶ 𝑒𝑑(0) ≤ 𝑒
𝑚𝑖𝑛}.  After recalling our previous 

evaluation given in [5], we suggest  following 

estimations for the primal constraints (6)-(10). 

𝑚𝑖𝑛∑(𝑃(𝑡)∑𝑎𝑑(𝑡)

𝑐

𝑡=1

)

2𝑇−1

𝑡=0

 

𝑒. 𝑡.   −𝑎𝑑
−𝑜𝑢𝑡 ≤ 𝑎𝑑 ∗ (𝑡) ≤ 0, ∀𝑡 = 0,⋯ , 𝑡

† − 1, 𝑑
∈ 𝑋1, 

𝑎𝑑 = 0, ∀𝑡 = 0,⋯ , 𝑡
† − 1, 𝑑 ∈ 𝑋2, 

0 ≤ 𝑎𝑑(𝑡) ≤ 𝑎𝑑
−𝑖𝑛, ∀𝑡 = 𝑡†,⋯ , 𝑇 − 1, 𝑑,  

𝑒𝑑(0) + ∆𝑇
∑ 𝜂𝑑(𝑡)𝑎𝑑(𝑡)
𝑡†−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑚𝑖𝑛, ∀𝑑 ∈ 𝑋1, 

 
𝑒𝑑(0) + ∆𝑇

∑ 𝜂𝑑(𝑡)𝑎𝑑(𝑡)
𝑇−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥

= 𝑒𝑑
∗ , ∀𝑑, 

(15) 

where 𝑒𝑚𝑖𝑛, 𝑡†, 𝜂𝑑(𝑡)
′𝑒,  and  𝑎𝑑(𝑡)

′𝑒  are the 

optimization integers, and 𝑒𝑚𝑖𝑛  is interpreted as 

the required SOC after full discharge, which is 

often shared by each EV integrated within a EV 

fleet. Alongwith for EVs, the available subset 𝑋2 

never discharges at [0, 𝑡†], since this subset is only 

concerned about the current state of charging prior 

to 𝑡†. 

It should be noted that, in e.q (15), 𝜂𝑑(𝑡) 
depend on 𝑎𝑑(𝑡), and they are firmly connected In 

case we set definites 𝑡† and  𝑒𝑚𝑖𝑛, we can expend 

(15) into two further sub constraints, in this case  

𝜂𝑑(𝑡)
′𝑒  is deterministic; 

• For discharging state; 

𝑚𝑖𝑛 ∑ (𝑃(𝑡) + ∑ 𝑎𝑑(𝑡)

𝑑∈𝑋1

)

2
𝑡†−1

𝑡=0

 

𝑒. 𝑡.  − 𝑎𝑑
−𝑜𝑢𝑡 ≤ 𝑎𝑑(𝑡) ≤ 0,   ∀𝑡 = 0,⋯ , 𝑡

† − 1, 𝑑
∈ 𝑋1 

 𝑒𝑑(0) +
1

𝜂𝑑
𝑜𝑢𝑡 ∆𝑇

∑ 𝑎𝑑(𝑡)
𝑡†−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑚𝑖𝑛,

∀𝑑 ∈ 𝑋1 

(16) 

• For charging state 

𝑚𝑖𝑛 ∑ (𝑃(𝑡) +∑𝑎𝑑(𝑡)

𝑐

𝑑=1

)

2𝑇−1

𝑡=𝑡†

 

𝑒. 𝑡.  0 ≤ 𝑎𝑑(𝑡) ≤ 𝑎𝑑
−𝑖𝑛,      ∀𝑡 = 𝑡†,⋯ , 𝑇 − 1, 

𝑒𝑚𝑖𝑛 + 𝜂𝑑
𝑖𝑛∆𝑇

∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=𝑡†

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑑

∗ , ∀𝑑 ∈ 𝑋1, 

 𝑒𝑚𝑖𝑛 + 𝜂𝑑
𝑖𝑛∆𝑇

∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=𝑡†

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑑

∗ , ∀𝑑

∈ 𝑋2 

(17) 

The optimized integers of e.q (16) and (17) 

are the only 𝑎𝑑(𝑡)
′𝑒. For pre-set 𝑡† and 𝑒𝑚𝑖𝑛, we 

can evaluate the equivalent optimal solutions 

𝑎𝑑
∗ (𝑡)′𝑒 for (16) and (17). The e.q (15) is, however 

converted into multi-level programming constraint 

(MLPC).   

Assertion 3; the tariff function in (15) is similar to 

(6). The estimated constraint is different from the 

primal optimization constraints (6)-(10) in the 

following problems only. The disparity problem (9) 

are not present in (15), making (15) lenient to 

compute as compared to the equations (6)-(10).   

3.2. Distributed Load Scheduling 
Algoirthm  

In this subsection we have proposed a 

distributed load scheduling algorithm for optimum 

load diversion constraint by employing EVs 

charging/discharging, this algorithm works on the 

distributed water filling technique. The basic 

approach is to compute 𝑡†  and 𝑒𝑚𝑖𝑛  in the 

distributed prospective, after that 𝑎𝑑(𝑡)
′𝑒  is 

readily achieved. The computing procedure of our 

proposed algorithm is explained next, in which for 

initialization we have assumed 𝑒𝑚𝑖𝑛 = 𝑒. 

Step 1; All EVs employ the distributed water 

filling technique to compute the following 

constraint.  

𝑚𝑖𝑛 ∑ (𝑃(𝑡) +∑𝑎𝑑(𝑡)

𝑐

𝑑=1

)

2𝑇−1

𝑡=𝑡†

 

𝑒. 𝑡.  0 ≤ 𝑎𝑑(𝑡) ≤ 𝑎𝑑
−𝑖𝑛,      ∀𝑡 = 0,⋯ , 𝑇 − 1, 

𝑒𝑚𝑖𝑛 + 𝜂𝑑
𝑖𝑛∆𝑇

∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=𝑡†

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑑

∗ , ∀𝑑 ∈ 𝑋1, 

 𝑒𝑑 + 𝜂𝑑
𝑖𝑛∆𝑇

∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=𝑡†

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑑

∗ ,

∀𝑑 ∈ 𝑋2, 

(18) 

That represents the optimal solution for (18) 

through 𝑎𝑑
𝑖𝑛′𝑒 . After executing these constraints, 

the aggregator will receive a time slot 𝑡𝑖𝑛 so that,  

 
𝑎𝑑
𝑖𝑛(𝑡) = 0, ∀𝑡 < 𝑡𝑖𝑛, 𝑎𝑛𝑑 𝑎𝑑

𝑖𝑛(𝑡𝑖𝑛)
> 0, ∀𝑑. 

(19) 

where we have an executing water level which is 

represented by 𝛾𝑖𝑛, and defined as;  

𝛾𝑖𝑛 = 𝑃(𝑡𝑖𝑛)∑𝑎𝑑(𝑡
𝑖𝑛)

𝑐

𝑑=1
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Step 2; Since, only EVs are available in the subset 

𝑋1  Therefore, we are activating the discharging 

state. Assume those EVs which are included in the 

subset 𝑋1 use the distributed water filling technique 

to compute the following constraint;   

𝑚𝑖𝑛∑(𝑃(𝑡) + ∑ 𝑎𝑑(𝑡)

𝑑∈𝑋1

)

2
𝑇−1

𝑡=0

 

𝑒. 𝑡.  − 𝑎𝑑
−𝑜𝑢𝑡 ≤ 𝑎𝑑(𝑡) ≤ 0,   ∀𝑡 = 0,⋯ , 𝑇 − 1, 𝑑

∈ 𝑋1 

 
𝑒𝑑(0) +

1

𝜂𝑑
𝑜𝑢𝑡 ∆𝑇

∑ 𝑎𝑑(𝑡)
𝑇−1
𝑡=0

𝐺𝑑
𝑚𝑎𝑥 = 𝑒𝑚𝑖𝑛 ,

∀𝑑 ∈ 𝑋1, 

(20) 

where we have fixed 𝑒𝑚𝑖𝑛 = 𝑒 . It represents the 

optimum solution of the constraint (20) through 

𝑎𝑑
𝑜𝑢𝑡′𝑒 . For EVs in 𝑋2 , fix 𝑎𝑑

𝑜𝑢𝑡 = 0, ∀𝑡 . After 

converging the aggregator we achieve a time 

instance 𝑡𝑜𝑢𝑡 so that; 

 
𝑎𝑑
𝑜𝑢𝑡(𝑡) = 0, ∀𝑑 > 𝑡𝑜𝑢𝑡 , and 𝑎𝑑

𝑜𝑢𝑡(𝑡𝑜𝑢𝑡)
< 0, ∀𝑑 ∈ 𝑋1 

(21) 

Although at this stage we have executed the 

water filling algorithm, but, the result is similar to 

the peak shaving, or it can be considered as invert 

water filling. The correspondent water level has 

been represented by 𝛾𝑜𝑢𝑡, as given;  

𝛾𝑜𝑢𝑡 = 𝑃(𝑡𝑜𝑢𝑡) + ∑ 𝑎𝑑(𝑡
𝑜𝑢𝑡)

𝑑∈𝑋1

 

Step 3; In this stage, a local EV aggregator 

compares two different water levels. By 

assumption 1, we get satisfactory 𝑡𝑖𝑛  and 𝑡𝑜𝑢𝑡 , 

which will descend during the intervals [𝑡𝑦, 𝑡𝑧] . 

Due to declining monotonous, either evaluation 

𝛾𝑜𝑢𝑡 ≥ 𝛾𝑖𝑛  is similar to this evaluation if 𝑡𝑜𝑢𝑡 ≤
𝑡𝑖𝑛. 

𝑡† ∈ [𝑡𝑜𝑢𝑡 , 𝑡𝑖𝑛], 𝑒𝑚𝑖𝑛 = 𝑒, 

and  

𝑎𝑑
∗ (𝑡) = 𝑎𝑑

𝑜𝑢𝑡(𝑡) + 𝑎𝑑
𝑖𝑛(𝑡),   ∀𝑡, 𝑑. 

Some of the details of the proposed algorithm are 

explained here.  

•   Supposedly, there are some possibilities 

which could not be achieved [𝑡𝑖𝑛 or 𝑡𝑜𝑢𝑡] 
such as (19) or (21) dominances, respectively. 

Let we infer 𝑡𝑜𝑢𝑡 as an example; there are two 

possibilities for 𝑡𝑜𝑢𝑡   which does not even 

exists; 1) The EVs discharging trims the 

complete load profile curve, as well as valley 

section, i.e., (𝑚𝑖𝑛𝑡(𝑃(𝑡) + ∑ 𝑎𝑑
𝑜𝑢𝑡

𝑑∈𝑋1 ) <

𝑚𝑖𝑛𝑡𝑃(𝑡). 2) . While the possibility 𝑡𝑖𝑛
′
>

𝑡𝑖𝑛  could be somehow possible, but its 

occurring possibility is extremely low,, 

therefore EVs can discharge within the time 

intervals  [𝑡𝑖𝑛, 𝑡𝑖𝑛
′
] . Although, in actual 

implementation, both of these possibilities are 

ruled out. Preliminarily, EVs does not contain 

extreme residual power, therefore, their 

discharging could not trim the overall load 

profile curve. Secondly, the actual difference 

between the peak load demand and valley 

filling is significantly huge, which assures 

that the stage 2) would never execute either.  

•   The optimally regulated load demand profile 

will be in a straight line which is not possible 

in practical case,  since, the rate of 

discharging and charging of an EV is limited, 

as well as only few number of EVs usually 

penetrates with the grid for peak shaving. 

However, by implementing optimum 

techniques for scheduling EVs 

charging/discharging, it is possible to regulate 

water levels, when if EVs are in discharging 

state which usually occurs in minimum rate as 

compared to the charging state, then  𝛾𝑜𝑢𝑡 ≥
𝛾𝑖𝑛  should be maintained.  

•   In Stage 3; if  𝑡𝑜𝑢𝑡 > 𝑡𝑖𝑛, then we can assume 

that EVs are able to supply enough power 

back to the grid which can be used for peak 

shaving. Therefore, in this scenario we should 

enhance 𝑒𝑚𝑖𝑛  so that  𝛾𝑜𝑢𝑡 = 𝛾𝑖𝑛 , thus, we 

get 𝑒𝑚𝑖𝑛  by the adaptation of vibrant bi-

section in the distributed network prospective.   

Assertion 4: the proposed algorithm in this 

research work is actually depending on the water 

filling technique implemented in our previous 

paper [5], it is leniently established that this 

algorithm works in a distributed manner. 

Moreover, on one side our distributed algorithm 

minimizes the computational load of an aggregator, 

while on the other side it maintains the owner’s 

privacy. Therefore, it is not essential for an 

aggregator to know about each EV specifications.  

Assertion 5: To persuade assumption 1, there is a 

need of extremely high amount of load, so that the 

proposed algorithm can manage aggregator 

performance effectively, hence the load of each 

household can be managed properly by strictly 

following the specified load scheduling outline, it 

is also analyzed that if an individual household 

performs unsatisfactory or it suddenly get out of 

business, even then it cannot influence the 

aggregator performance. In such scenario we 

assume that the assumption 1, could not be 

contented for fewer load amounts.  
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For instance, it is anticipated, that the load 

demand on a micro grid during night hours could 

have various peak spikes and valleys. Therefore, to 

tackle these situations, the load demand curve 

could be divided into various sub demand curves, 

and the phase targeted SOCs are assigned in such 

manners that each assignment is optimum and 

specifically targeting a phase for SOC 

accomplishment, therefore, this sub demand curve 

should be equal to the required SOC within a 

complete curve. Hence, the proposed algorithm 

could have been implemented for each individual 

sub curve to achieve the optimal solution for the 

whole curve.  

3.3. The Convergence Evaluation  

In this subsection we will have explained 

the analysis of the convergence results of our 

proposed scheduling algorithm. 

Lemma 1; Let 𝑡𝑖𝑛 and 𝑡𝑜𝑢𝑡 exists in such scenario 

that the conditions (19) and (21) holds when 

𝑡𝑜𝑢𝑡 ≤ 𝑡𝑖𝑛 , after that the proposed algorithm 

converges to the optimum solution for the 

constraint (15). 

To prove theorem 1; the following lemmas 

are required. Lemma 1 is related to the optimal 

water filling by penetrating a single EV.  

𝑚𝑖𝑛∑(𝑃(𝑡) + 𝑎(𝑡) − 𝜔)2,

𝑇−1

𝑡=0

 

𝑒. 𝑡    0 ≤ 𝑎(𝑡) ≤ 𝑎−𝑖𝑛,    ∀𝑡 

 𝑒(0) + 𝜂𝑖𝑛∆𝑇
∑ 𝑎(𝑡)𝑇−1
𝑡=0

𝐺𝑚𝑎
= 𝑒∗ (22) 

It is interpreted as;  

𝑎∗(𝑡) = Γ[−λ∗ − P(t)],    ∀t, 

where 𝜔  denotes the optimally aggregated load 

demand, which remains stable for all 𝑡, and 𝑎∗(𝑡) 
is the optimum solution for the constraint (22), 

where λ∗  represents the optimum Lagrange 

multiplier, note variable Γ[∙] is presented in e.q., 

(12).  

Lemma 2; The optimum solution for the constraint 

(22) is not considered as the optimal load demand 

𝜔.  

Proof; we comprise  

∑ (𝑃(𝑡) + 𝑎(𝑡) − 𝜔)2𝑇−1
𝑡=0 = ∑ (𝑃(𝑡) +𝑇−1

𝑡=0

𝑎(𝑡))2 + 2𝜔∑ 𝑎(𝑡) + 𝑇𝜔2𝑇−1
𝑡=0   (23) 

As narrated impartiality constraint at 𝑎(𝑡)′𝑒 

exhibits the following condition as follows;  

 ∑𝑎(𝑡)

𝑇−1

𝑡=0

= (𝑒∗ − 𝑒(0))𝐺𝑚𝑎𝑥/(𝜂𝑖𝑛∆𝑇) (23) 

it is a stable constraint, Thus, by merging (23) and 

(24), we get  

∑(𝑃(𝑡) + 𝑎(𝑡) − 𝜔)2
𝑇−1

𝑡=0

=∑(𝑃(𝑡) + 𝑎(𝑡))2 + 𝜌(𝜔),

𝑇−1

𝑡=0

 

while  

𝜌(𝜔) = 2𝜔 (𝑒∗ − 𝑒(0)𝐺𝑚𝑎𝑥/(𝜂𝑖𝑛∆𝑇)) + 𝑇𝜔2, 

Consequently 𝜔 only regulates the stable terms of 

the tariff function, thus the Lemma 2 has been 

proved. 

• Now we will prove Lemma 1.  

 Validation of the Lemma 1; initially we 

delineate 

𝑔𝑡(𝑎(𝑡), 𝜔) = (𝑃(𝑡) +∑𝑎𝑑(𝑡) − 𝜔

𝑐

𝑑=1

)

2

 

𝐺(𝑎, 𝜔) = ∑𝑔𝑡(𝜔).

𝑇−1

𝑡=0

 

It is followed by the tariff equation (6) which 

is similar to 𝐶(𝑎, 0).  Subsequent to the 

convergence of the proposed algorithm; there 

would be 2 types of results;  

A: Initially we prove that  𝑡†  is the optimum 

solution despite having some contradictions. We 

assume that, there is a possibility of 𝑡‡ < 𝑡𝑜𝑢𝑡and  

𝑡‡  which establishes that the overall tariff is fewer 

than 𝑡† has, It is represented by 𝑎𝑑
‡ (𝑡) which has 

the optimum solution for 𝑡‡. As given in Lemma 2, 

we change the preliminary cost function by 

𝐺(𝑎, 𝛾𝑜𝑢𝑡)  despite imposing any replacement to 

the optimum solution. The charging and 

discharging procedures could be divided into three 

sections respectively.  

• In case of 𝑡 ∈ {0, 𝑡‡}, we compute constraint 

(16) by employing our algorithm 1, in which 

we have replaced 𝑡†  by 𝑡‡ . It denotes the 

resultant subsequent water level by 𝛾‡𝑜𝑢𝑡 . 

Since it is relative to the natural contrary water 

filling function, 𝑡‡ < 𝑡†  which leads to 

𝛾‡𝑜𝑢𝑡 < 𝛾𝑜𝑢𝑡,  because we have shrieked the 

EVs discharging duration, when it is still 

possible to implement load leveling constraint. 

from Lemma 1; there should be some 𝑡 left 

for 𝑎𝑑
∗ > −𝑎𝑑

−𝑜𝑢𝑡 due to this shrieking, in such 

scenario we get;  
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{
𝑎𝑑
‡ (𝑡) = −𝑎𝑑

−𝑜𝑢𝑡,    if 𝑎𝑑
∗ (𝑡) = −𝑎𝑑

−𝑜𝑢𝑡

𝑎𝑑
‡ (𝑡) < 𝑎𝑑

∗ , (𝑡)         if𝑎𝑑
∗ > −𝑎𝑑

−𝑜𝑢𝑡
 

which leads to 𝑡 ∈ {0, 𝑡‡}, 

𝑃(𝑡) +∑𝑎𝑑
‡ (𝑡)

𝑐

𝑑=1

≤ 𝑃(𝑡) +∑𝑎𝑑
∗ (𝑡),

𝑐

𝑑=1

 

here the impartiality just stands at 𝑡 when 𝑎𝑑
∗ (𝑡) =

−𝑎𝑑
−𝑜𝑢𝑡(𝑡). Further, we also have the information 

that some 𝑡 exists in this case; 

𝑃(𝑡) +∑𝑎𝑑
∗ (𝑡)

𝑐

𝑑=1

− 𝛾𝑜𝑢𝑡 = 0 

𝑃(𝑡) +∑𝑎𝑑
‡ (𝑡)

𝑐

𝑑=1

− 𝛾𝑜𝑢𝑡 < 0, 

So that we get 

 

∑ 𝑔𝑡(𝑎
‡(𝑡), 𝛾𝑜𝑢𝑡)

𝑡‡−1

𝑡=0

> ∑ 𝑔𝑡(𝑎
∗, 𝛾𝑜𝑢𝑡)

𝑡‡−1

𝑡=0

, 

(24) 

• In case of 𝑡 ∈ {𝑡‡, 𝑡𝑖𝑛}, we gain −𝑎𝑑
∗ (𝑡) ≤

𝑎𝑑
∗ (𝑡) < 0  moreover 𝑎𝑑

‡ (𝑡) = 0 . since 

𝑃(𝑡) + ∑ 𝑎𝑑
∗ (𝑡) = 𝛾𝑜𝑢𝑡𝑐

𝑑=1 , thus it is 

followed by;  

 

∑ 𝑔𝑡(𝑎
‡(𝑡), 𝛾𝑜𝑢𝑡)

𝑡𝑖𝑛−1

𝑡‡

> ∑ 𝑔𝑡(𝑎
∗, 𝛾𝑜𝑢𝑡)

𝑡‡−1

𝑡=0

, 

(25) 

 

• In case of 𝑡 > 𝑡𝑖𝑛 , due to 𝑡‡ < 𝑡𝑖𝑛 , as 

mentioned in Lemma 1, we get 𝑎𝑑
‡ (𝑡) =

𝑎𝑑
∗ (𝑡), which is followed by;  

 

∑ 𝑔𝑡(𝑎
‡(𝑡), 𝛾𝑜𝑢𝑡)

𝑇−1

𝑡=𝑡𝑖𝑛

> ∑ 𝑔𝑡(𝑎
∗, 𝛾𝑜𝑢𝑡)

𝑇−1

𝑡=𝑡𝑖𝑛

, 

(26) 

 

By the equations (25)-(27) we get;  

𝐺(𝑎‡, 𝛾𝑜𝑢𝑡) > 𝐺(𝑎∗, 𝛾𝑜𝑢𝑡) 
 

This statement is contradictory as compared 

to the initial assumption.. Correspondingly we are 

able to confine this statement, since, there is no 

possibility of 𝑡‡ > 𝑡𝑖𝑛, therefore the overall tariff 

is additionally minimized. So that  𝑡‡  is the 

optimum selection. 

B; In this scenario, we will prove that 𝑒𝑚𝑖𝑛 is also 

the optimal choice due to contradictions. We 

assume, there is a possibility of 𝑒⋄ > 𝑒𝑚𝑖𝑛 in this 

case the overall tariff is further decreased. It is 

represented by 𝑎𝑑
⋄ (𝑡)  which is the optimum 

solution for 𝑒⋄. Therefore, we are again using tariff 

function 𝐺(𝑎, 𝛾𝑜𝑢𝑡) for the following case.  

The implementation of 𝑒⋄  could lead 

towards new settlements referred as differentiation 

points, which are represented by 𝑡⋄,𝑖𝑛 and 𝑡⋄,𝑜𝑢𝑡 
correspondingly. Two new water levels have been 

added at this stage, which are denoted by 𝛾⋄,𝑖𝑛and 

𝛾⋄,𝑜𝑢𝑡 . In such scenario, EVs are supplying 

minimum power to the grid. It is possible due to 

the specialty of the water filling algorithm; it could 

be verified easily from following formulations;  

[𝑡⋄,𝑜𝑢𝑡 < 𝑡𝑜𝑢𝑡 < 𝑡𝑖𝑛 < 𝑡⋄,𝑖𝑛], 

[𝛾⋄,𝑜𝑢𝑡 > 𝛾𝑜𝑢𝑡 > 𝛾𝑖𝑛 > 𝛾⋄,𝑖𝑛] 

In the following narration, these two novel 

water levels 𝛾⋄,𝑖𝑛  and 𝛾⋄,𝑜𝑢𝑡  equally shift away 

from the initial water level which is 𝛾𝑜𝑢𝑡 . By 

implementing the similar algorithm employed in 

scenario A, we get;.  

 

{
  
 

  
 ∑ 𝑔𝑡(𝑎

⋄,(𝑡), 𝛾𝑜𝑢𝑡) >∑ 𝑔𝑡(𝑎
∗, 𝛾𝑜𝑢𝑡)

𝑡𝑜𝑢𝑡−1

𝑡=0

𝑡𝑜𝑢𝑡−1

𝑡=0

∑ 𝑔𝑡(𝑎
⋄ (𝑡), 𝛾𝑜𝑢𝑡) = ∑ 𝑔𝑡(𝑎

∗, 𝛾𝑜𝑢𝑡)
𝑡𝑖𝑛−1

𝑡=0𝑡𝑜𝑢𝑡

𝑡𝑖𝑛−1

𝑡=𝑡𝑜𝑢𝑡

∑ 𝑔𝑡(𝑎
⋄ (𝑡), 𝛾𝑜𝑢𝑡) >∑ 𝑔𝑡(𝑎

∗, 𝛾𝑜𝑢𝑡)
𝑡𝑜𝑢𝑡−1

𝑡=𝑡𝑖𝑛

𝑇−1

𝑡=𝑡𝑖𝑛

 (27) 

By (28) we get 

𝐺(𝑎⋄,, 𝛾𝑜𝑢𝑡) > 𝐺(𝑎∗, 𝛾𝑜𝑢𝑡) 

Even this possibility is also a contradictory 

statement which is inverse from our initial 

assumption. Thus, we can conclude the eventual 

result that 𝑒⋄ < 𝑒𝑚𝑖𝑛  does not exists so that the 

overall tariff is further reduced. Note that in this 

case 𝑒𝑚𝑖𝑛 is the optimal solution.  

4. Simulation Results  

In the following section we have briefly 

presented the simulation results, these simulations 

has been carried out to evaluate the performance of 

our proposed algorithm. Initially we have only 

penetrated five EVs to regulate the load demand of 

100 household appliances, after that we have 

applied this algorithm by introducing 10 assorted 

EVs. In last, we have compared the results of our 
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proposed algorithm with the existing techniques to 

evaluate the robustness of the proposed algorithm.  

4.1. Scenario 1: Penetrating 5 EVs 

In this case, we have used 5 EVs to power 

100 households. This basic power requirement and 

load demand are presented in Fig. 1. Let each EV 

coordinates with the grid at 20:00, and disconnects 

at 8 am in the next morning. The EVs 

specifications are as follows 𝑎𝑑
−𝑖𝑛 = 5kW, while 

𝑎𝑑
−𝑜𝑢𝑡 = 5kW , 𝐺𝑑

𝑚𝑎𝑥 = 25kWh , 𝜂𝑖𝑛 = 95%  𝑒 =

25%, 𝑒 = 90%, and the output efficiency of EVs 

are 
1

(𝜂𝑜𝑢𝑡)
= 105% , whereas 𝑒𝑑

∗ = 90% . We fix 

the sampling duration ∆𝑇 = 20 min . The initial 

SOCs of EVs are heterogeneous and denoted by 

𝑒1 = 33.1149% , 𝑒2 = 20.7143% , 𝑒3 =
36.9827%, 𝑒4 = 38.6800%, 𝑒5 = 33.5747%. 

We fix 𝑒𝑚𝑖𝑛 = 𝑒 = 25%. The eventual gain 

of step 1 and step 2 is presented is Fig. 2. It could 

be analyzed that after executing two initial steps, 

the water level during EV discharging is high as 

compared to the fixed discharging model, i.e, 

𝛾𝑜𝑢𝑡 > 𝛾𝑖𝑛. As it is also given in step 3, it is not 

required to select 𝑠𝑚𝑖𝑛 again, because we can get 

the optimal load scheduling by easily performing 

the charging/discharging tasks, as presented in 

Fig. 3.  

 

Fig 2: The results of case 1 and case 2, while 

penetrating 5 EVs 

We have also compared the peak load 

diversion by introducing collective EVs 

charging/discharging, this process has been carried 

out using optimal valley filling technique to 

perform the charging task by penetrating 

Algorithm 1. It is easily verified from simulation 

analysis, despite of the “invariant water filling” 

from 20:00 to 22:00, when all EVs are charging, 
the response of our algorithm is identical since it is 

consistently maintaining water level, which is the 

optimal solution. This is also proved when results 

compared to the theoretical results of Algorithm 1, 

we can deduce that the load profile curve is much 

smoother when EVs was performing charging or 

discharging tasks.  

4.2. Scenario 2; Penetrating 10 EVs 

In this scenario, we have evaluated multiple 

EVs performance with the slightly higher 

penetration ratio. This is different from scenario 1, 

as 10 EVs has been penetrated in this particular 

test. The parameters of the proposed algorithm are 

given here, and the non-mentioned details are 

same, as used in scenario 1.  

𝑎−𝑖𝑛 = 𝑎−𝑜𝑢𝑡(𝐾𝑊)     
=  6.7054 9.4229 8.5235 6.72122 7.3913  

 8.1400 9.5630 9.5765 6.8055 9.6059, 
 
𝑒(0)(%)
= 33.124 30.832 36.892 38.769 33.484  
                 
  35.245 34.753 27.755 33.290 23.533  

𝐺𝑚𝑎𝑥(𝑘𝑊ℎ)
= 42.649  58.387 52.737 41.890 45.640  
                         
50.927 59.250 59.387 43.253 59.312,  

𝜂𝑖𝑛(%) = 95.620 90.240 93.900 86.670 89.750  
                 95.250 92.820 95.660 92.320 85.290 

1

𝜂𝑜𝑢𝑡
(%)

= 112.75 108.66 110.03 115.67 107.83  
                   111.88 116.77 109.87 108.55 108.66 

Initially we have selected 𝑒𝑚𝑖𝑛 = 𝑒 = 25%. 

The performance of scenario 1 and scenario 2 is 

presented in Fig. 4. It can be analyzed, that after 

executing two initial steps, the water level of the 

battery discharging is minimum when it is 

compared with the initial discharging process, i.e. 

𝛾𝑜𝑢𝑡 < 𝛾𝑖𝑛. It shows that it is not essential for EVs 

to evaluate the optimal 𝑒𝑚𝑖𝑛  by using third step 

which adopts the optimization of the bi-section. 

The eventual result is given in Fig. 5. it is evident 

that 𝑒𝑚𝑖𝑛 is 22.04%. 

It is also analyzed that our algorithm not 

only controls the homogeneous EVs, it also 

manages the heterogeneous once. This test show 

that, the overall regulated load demand profile 

curve is in a stable form, and it could be further 

analyzed that optimum load shifting while EVs 

charging/discharging is very effective as compared 

to the valley filling charging technique.  
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Fig 3: Optimal load diversion by implementing 
EVs charging and discharging 

 

Fig 4: The results of case 1 and case 2, while 

penetrating 5 EVs 

4.3. Scenario 3: Perfromance 
evaluation of the Proposed 
Algorithm with Bonmin  

In this scenario, we compared the results of 

our proposed algorithm with the existing integral 

programming algorithm. Because the constraints 

(6)-(10), could be categorized as MINLP 

constraint, therefore we have used the open source, 

non-linear mixed integral programming 

(BONMIN) which solves the general MINLP 

constraints very effectively, which has been 

actually used to compute the original constraint 

[37], [38]. Particularly, a hybrid approximation 

based algorithm (usually called B-Hyb) is selected 

for the implementation of BONMIN. In [39] a 

detailed description of this algorithm is presented.  

The comparison of BONMIN executer and 

our proposed algorithm has been carried out by 
penetrating 1 to 10 homogenous EVs. We infer that 

each EV connects to the grid at 20:00, and leaves 

at 8 am in the next morning, (similar to the 

previous cases). The other simulated EVs 

parameters are same as scenario 1.  

 

Fig 5: Optimal load diversion by implementing 

EVs charging and discharging 

To eliminate the uncertainty factor, both 

algorithms are simulated in MATLAB, during 

testing, both algorithms converged successfully to 

the optimal solution; however their computational 

performances are totally different. The 

convergence time of the BONMIN and our 

proposed algorithm with different EV numbers is 

presented in Table 1.  

Table 1: The Computational Time Comparison of 
our Algorithm with Bonmin 

                                                            
Algorithm 

   Time (sec) 

Numbers 

 

Our 
Algorithm 

 

BONMIN 

1 0.00899 39.71 

2 0.01087 204.89 

3 0.01125 159.94 

4 0.01148 1652.58 

5 0.01205 4288.35 

10 0.01250 93495.85 

It could be leniently analyzed that 

thecomputational speed of our proposed algorithm 

is significantly faster as compare to the BONMIN 

algorithm. Our algorithm takes only microseconds 

for computation, and this computational time do 

not exceed much, even when more EVs have been 

penetrated. Conversely, the computation time 

acquired by the BONMIN algorithm is 

significantly higher and gradually increases as 
more EVs penetrates. In order to govern the 

charging/discharging process of only 10 EVs it 
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actually took 93583.83 seconds, which is around 

26 hours in total, but our proposed algorithm took 

just 12.3 microseconds to perform the similar 

process. If we consider more practical case, then in 

near future, it is projected that a conventional grid 

will face thousands of EVs each day, so we can 

conclude that BONMIN could not be implemented 

for EVs scheduling on broader scale.  

5. Conclusion  

In this research work, we have investigated 

the constraints restricting the broader deployment 

of EVs. Preliminarily we have formulated a load 

scheduling problem to manage the EVs 

charging/discharging, and this load scheduling 

problem has been defined as VDP constraint, 

which is extremely difficult to compute directly. 

Therefore, by altering the features of basic load 

profile of the night hours, we have formulated a 

computable estimation model for the VDP 

constraint, moreover, to leniently govern the 

computation of the following constraint; we have 

proposed a distributed algorithm to achieve 

optimal load scheduling for EVs. By 

implementing this algorithm, each EV is charged 

to the required SOC while keeping the overall 

power demand stable.  

This algorithm is distributed in such 

manners that, primarily all EVs are locally 

managed before forwarding this information to the 

aggregator.  In future, the electricity distributors 

would need to work for developing methodologies 

to maintain assumption 1, in those scenarios our 

pre-proposed load scheduling model can be 

employed. Otherwise numerous dynamic EVs 

networks would be required for this purpose. In 

addition to promote the use of EVs, a robust 

system is required where an EV should be allowed 

to easily connect and disconnect for charging. 

Moreover, in near future it is anticipated that 

existing conventional grids will also face 

extremely inconsistent energy generation 

penetration through intermittent renewable 

resources which is known as distributed 

generation even in this case our algorithm can be 

used to stabilize the grid by enabling the V2G 

facility.  
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