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1. Introduction 

Shear strength of concrete has prime importance in 

structural design. It is reported as ranging from 35% to 80% 

of compressive strength, i.e. in between tensile and 

compressive strength of concrete [1]. Sudden and violent 

mode of failure in shear requires extra care and results in 

employment of higher safety factors. 

The research about inherent shear capacity of 

rectangular beams produced two different schools of thought 

in Europe and America. According to European researchers

-

2√fc΄. 

Ultimate method of design was introduced in the 
early sixties of last century. Research work on the 
ultimate flexural capacity of a section was successfully 
completed with in few years. To predict the flexural 
capacity, equations were developed, whose results 
were in good agreement with the actual/experimental 
values. Mechanism of flexural failure of a rectangular 
reinforced concrete beam was much simpler to 
understand as compared to shear failure. In fact shear 
failure of reinforced concrete beams is a very complex 
phenomenon due to involvement of too many 
parameters. Factors influencing the shear capacity of 
beams are shear span to depth ratio (a/d), tension 
steel ratio (ρ), compressive strength of Concrete (fc΄), 
size of coarse aggregate, density of concrete, use of 
fibers in concrete, size of beam, position and geometry 
of haunches, tensile strength of concrete, support 
conditions, clear span to depth ratio (L/d), number of 
layers of tension reinforcement, grade of tension 
reinforcement and end anchorage of tension 
reinforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Research work on ultimate shear capacity of beams 

without shear reinforcement is still continuing. Up till now 
no unique solution is available for its prediction. Many 

equations have been developed by various researchers (6-

11) based on theoretical concepts and experimental data. 

Each equation has its own merit and demerits. There are few 

equations which present very strong co-relation between 

dependent variable vu and independent variables fc΄, ρ and 

a/d.   

With the development of Fracture Mechanics approach 

and Finite Element analysis[2,3] for the inelastic behavior of 

reinforced concrete beams it can be hoped that in few years 

it will be possible to understand the true interaction of so 

many variables affecting the shear strength of beams. 

In the present study it has been tried to find out the 

shear strength of rectangular reinforced beams without web 

reinforcement, considering three parameters only, i.e. fc΄, ρ 

and a/d, and equations were developed for shear strength 

prediction.  

1.1 Modes of shear failure 

Depending upon the shear span, shear failure may be 

classified into three types [1] i.e. diagonal tension failure, 

diagonal compression failure and splitting or true shear 

failure (shown in Figures 1 to 3 respectively). 

 

Fig.1 Formation of Diagonal Tension Cracks 
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Diagonal tension failure always occur when a > 2d 

(Figure 1), but in very limited cases it may occur for a < 2d 

[1]. When load and reaction are far apart then diagonal 

tension failure is possible. The diagonal crack starts from 

the last flexural crack and turns more and more inclined 
under shear loading. The diagonal crack encounters 

resistance as it moves up into the compression zone. It 

becomes f . With further 

increase in load, the tension crack gradually extends at a 

very flat slope until sudden failure at point 2, the subsequent 

arch mechanism is not capable of sustaining the load beyond 

cracking load [4]. Shortl

, 2, 3, and 4[1]. This type of 

failure is also called beam action failure. 

In diagonal compression failure the specimen is able to 
carry additional load after formation of the first fully 

developed inclined tension crack [5]. This type of failure 

occur for shear span (a) to depth (d) ratio 1 to 2.5(d < a < 

2.5d) [1]. When reaction and load are closely spaced then 

vertical compressive stresses under the load reduces the 

possibility of further tension cracking. Similarly vertical 

compressive stresses over the reaction also limit the bond 

splitting and diagonal cracking along the steel. Hence a 

large shear in a short length may initiate 45o crack (web 

shear crack) across the neutral axis before a flexural crack 

appears. Such cracks restrict the shear resistance into a 
smaller un-cracked depth, thus increasing the shear stress. 

Hence the beam acts as a tied arch. Propagation of inclined 

crack reduces the compression zone. In the vicinity of load 

point it becomes too small to resist the compression force, 

and it crushes (shaded area in Figure 2). Such failure of 

compression zone above diagonal cracking is also called 

arch action [4]. 

 
Fig.2 Shear compression failure for small span. 

 

Fig. 3:  True shear failure. 

Splitting or true shear failure occurs when shear span is 

too short i.e. a < d (Figure 3). In this case shear is carried as 

an inclined thrust between load and reaction, which almost 

eliminates ordinary diagonal tension concepts. Shear 

strength is much higher in such cases. The final failure is 
splitting or it may fail in compression at the reaction. 

2. Equations to predict shear capacity 

Shear capacity of rectangular beams has been an area 

of major interest among the researchers. Based on 
experimental observations, different researchers have 

developed different equations for the prediction of shear 

capacity of the rectangular beams. A brief account is given 

below. 

2.1 Zsutty’s Equation 

T C Zsutty [6, 7] collected the test data of about 200 

beams from different responsible sources and developed 

equation for the prediction of shear strength of 

longitudinally reinforced beams. Equations were developed 

by combining the techniques of dimensional and statistical 

regression analysis. Zsutty also noted that on the vu ~a/d 

graph there is a critical point (divorcing point) at a/d = 2.5, 

which indicate the separate modes of shear failure. For a/d > 

2.5 beam fails under beam action and for a/d < 2.5 beams 
fails under arch action. Hence Zsutty was first to realize this 

and developed two different equations. 

vu  (1)               2.5  a/dfor         )a
d   (fc´ 60   1/3  

vu   (2)         2.5  a/dfor       )a
d (  )  (fc´ 150 4/31/3  

The equations (1) and (2) represent very strong relation 

between dependent (vu) and three independent variables (fc΄, 

ρ, d/a). However Zsutty fails to impose maximum and 

minimum limits on the variables, as ACI placed a limit of 

3.5√ fc΄ and Placas and Regan [8] placed a limit of 12(fc΄)
1/3 

on the maximum estimated value of ultimate shear. 

Moreover he used a random data of about 200 beams, where 

as, well organized data is required for development of 

equation. 

2.2 Mphonde and Frantz’s Equation 

A G Mphonde and G C Frantz [9] in 1984 developed 

an equation for shear strength of rectangular reinforced 

beams using regression analysis. 

         vu   (3)                           71(fc´) 10.1 1/3  

This equation has a very limited application and is only 

valid for a/d = 3.6. Only one variable i.e. fc΄ is considered 

during derivation of this equation and contribution of steel 

ratio and shear span to depth ratio are altogether ignored. 

2.3   Bazant and Kim’s equation 

Z P Bazant and J K Kim [10] in 1984 analyzed 

diagonal shear failure of longitudinally reinforced concrete 

beams using recent fracture mechanics approach. In addition 

to size effect a rational formula for the effect of steel ratio 
and shear span was derived. 



Development of Shear Capacity Equations for Rectangular Reinforced Concrete Beams  

 3 

vu 
 (4)         ]

)/(
3000fc´][

)
25

1(

10[ 
52/1

3

da
da

d

 

Where da is the  Max. aggregate size 

The above equation (4) has better agreement with the 

test data. In this equation five parameters (fc΄, ρ, d/a, d and 

da) are correlated with ultimate shear strength of rectangular 

beams, especially the effect of aggregate size, which plays 

very important role in the shear strength. 

2.4   Kim and White’s Equation 

In 1991 W Kim and R N White [11] proposed a 

hypothesis for the shear cracking mechanism for point 

loaded reinforced concrete beams with no web 

reinforcement. By adopting an approximate analytical 

approach they give the following relation for cracking shear 
strength. 

vcr   (5)                  bd fc´)]a
d()-(1 [ 9.4 1/32  

Equation (5) is derived purely on analytical basis. Its 

applicability was examined for more that 100 test beams and 

results showed good correlation between the predicted and 

measured value [11]. However single equation is developed 

for all values of a/d which is unjustified. Separate equations 

should have been developed for both sides of divorcing 
point i.e. a = 2.5d. 

2.5   ACI code equation 

ACI code [12] presented a formula for the prediction 

of shear cracking load in 1963, which was developed by the 

linear regression based on thousands of beam test results 

subjected to UDL only. 

vcr  (6)          fc´3.5   ) 
M

dV
( 2500 fc´ 1.9 

u

u  

This equation remains the same till the issue of 2008 

ACI code. In 2008 the equation is little bit modified which 
is shown as below. 

vcr  (7)          fc´3.5   ) 
M

dV
( 2500 fc´ 1.9 

u

u  

Only difference is that a factor λ is introduced along 

with concrete strength. It defined as, “modification factor” 

reflecting the reduced mechanical properties of lightweight 

concrete. For lightweight concrete it varies from 0.75 to 

0.85. For normal weight concrete it is equal to 1, hence 

practically for normal weight concrete there is no change in 

the equation (6) given in 1963 code. ACI 318-63 equation 
has serious imperfections. For low values of ρ, vu and d/M, 

lower strength values are well predicted by this equation [6]. 

Two types of beam behaviors (beam and arch actions) are 

not separately treated in this equation [7]. This equation for 

shear design is conservative at a/d = 3.6, at a/d = 2.5 it gives 

lower bound values, and at a/d = 1.5 it under estimates even 

the lower bound measured shear capacity by 71% for high 

concrete strengths[9]. This equation is un-conservative when 

the ratio of the longitudinal reinforcement ρ is small [13]. 

3.  Casting and Testing of Beams 

In the present study beams were cast in steel forms 

with the tension reinforcement near the bottom. No stirrups 

(shear reinforcement) are provided in the beams. Lifting 

lugs were also provided for transporting the finished 

specimen to the test platform. Nominal size of the beams 

was 6x12 inches x9 feet. The concrete was compacted with 
an internal vibrator. Form work was removed after 48 hours. 

Beams were kept in the curing room for 28 days. To 

facilitate the tracing of cracks, the beams were distempered 

white prior to testing. 

To study the effect of three variables (fc΄, ρ & d/a) total 

nineteen beams were cast in four series. First series (a/d 

series) consisted of seven beams (designated as B1 to B7 

a/d) in which all other parameters were kept constant except 

the parameter a/d. This series of seven beams helped to 

investigate the effect of a/d ratio on cracking, ultimate shear 

strength of beam and to determine the divorcing point. 
Second series (E-series) consisted of 12 beams. Ten new 

beams and data of two beams from a/d series are also used 

for analysis. This series is further subdivided into two 

groups. One group having a/d ratio 

& ρ were 

also changed in a systematic order to investigate the effect 

of three parameters (fc΄, ρ & d/a) on the beam shear strength 

and to develop equations. All the parameters were either 

increasing or decreasing the shear strength. The aim of study 

is to develop shear capacity equation. Third series is ρ 

series. Two beams were cast keeping the percentage of steel 

as variable and data of one of the beams from E series is 
also used in this series. Hence data of nineteen beams 

actually serves as 22 for the purpose of analysis. Properties 

of material used are listed and explained below. 

3.1  Cement 

Maple leaf cement (locally manufactured) is used for 

casting of specimens. It has standard consistency equal to 

31%. Initial and final setting time was 120 and 180 minutes 

respectively. Soundness expansion measured as 5mm and 

fineness (%age passing ASTM sieve # 200) is 85%. 

3.2 Fine Aggregate  

Laurencepur sand was used as fine aggregates having 
loose bulk density 92.31 pcf and rodded bulk density 101.22 

pcf. Fineness modulus was determined equal to 2.56 with 

the following gradation. Passing ASTM sieve # 4 is 99.2%, 

# 8 is 93.7%, # 16 is 80.7%, # 30 is 50%, # 50 is 18.1%, and 

# 100 was 2.7%.  

3.3 Coarse Aggregate 

Margalla crush with maximum size ¾” was used as 

coarse aggregate, having loose bulk density 85.97pcf and 

rodded bulk density 96.03 pcf. Aggregate impact value 
measured as 17.61% and aggregate crushing value 26.8%. 

Fineness modulus is equal to 6.77. Percentage passing 

ASTM sieve 1-1/2” (38.1mm) is 100%, 3/4” (19mm) is 

95.15, 3/8” (9.5mm) 26.3%, sieve # 4(4.75mm) 1.2% and # 

8(2.36mm) 0.1%. 
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3.4   Steel Reinforcement 

Deformed bars meeting the requirements of ASTM A 

615-80 were used as reinforcement in all beams to insure 

shear failure. Steel bars #4 had shown yield strength 72500 

psi, ultimate strength 102800 psi and percentage elongation 

13.75%, where as bars # 5 having yield strength 65700 psi, 

ultimate strength 102200 psi and %age elongation 18.75%. 

Proportioning by weight is adopted for preparation of 

concrete. To vary the cylinder strength of concrete ranging 

from 2250 to 5250 psi mix proportions of 1:3:6, 1:2.5:5, 

1:2:4, 1:1.75:3.5, 1:1.6:3.2 and 1:1.5:3 were used. Water 

cement ratio was varying from 0.45 to 0.80. Concrete was 

mixed in a horizontal pan-type mixer of 3 cft capacity. 

Concrete was mixed in two batches in the mixer for one 

beam.  Cylinders of 6"x12" were cast to determine 28 days 

cylinder strength of concrete. 

3.5 Instrumentation and Testing Procedure 

The loading arrangements and instrumentation is 

shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5:  Beams of a/d-series 

Beams were tested as simply supported in a reaction 

frame and load was applied with the help of manually 

operated hydraulic jack. Concrete pedestals supported the 

specimen and the load was applied through steel loading 

beam. Bourdon gauge which was calibrated before testing 
was used to measure load. Pressure gauge and pressure cell 

were kept at the same level to eliminate the elevation 

correction to the bourdon gage. The forces at the load and 

reaction points were evenly distributed by steel bearing 

plates 3x6 inch in size, which were pasted by a thin layer of 

plaster of Paris.  

Nine deflection gauges were employed to record 

deflection. The space between load points is divided into 8 

equal parts. Gauges L1 and L2 are placed under the loads and 

gauge # 4 is at the center to record maximum deflection. 

This arrangement facilitated us to verify the theoretical 

curvature of beam with the observed values. Flexural cracks 
in critical flexural zone, flexure shear cracks and shear 

cracks in critical shear zone were carefully observed using 

magnifying glass during and after each load increment. The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: E-series Beams having shear span to depth  

ratio ≥ 2.5 

 
Fig. 4:   Test set up 
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Fig. 7:  E-series Beams having shear span to depth 

ratio < 2.5 

crack locations were marked sequently on the beams 

mentioning the load increments. The load at which first 

inclined shear crack slightly crosses the mid depth of beam 

in the critical shear zone was designated as "cracking shear 

load”. After observing the cracking shear load, deflection 

gauges were removed to avoid damage and beams were 

loaded to failure. Failed beams are shown in Figures 5-8. 

4. Test Results 

Summary of test results of RCC beams are given in 

Table 1. The shear strength and relative beam strength  

calculations are presented in Table 2. Graphical 

representation of data of Table 2 is also given in Figs. 9 and 

10. Both graph show clear change of slope at a/d value equal  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig, 8:  Beams of ρ-series 
 

to 2.5(divorcing point). From Fig: 10 it is evident that the 

relative beam strength (ratio of ultimate moment to the 

flexural moment capacity of the beam) is the lowest at 

divorcing point. These figures justify the Zsuttys’ stance of 

developing separate equation for both sides of divorcing 

point. 

5.  Development of Equations. 

The best available form of equations is that presented by 

Zsutty. Though ACI code had not recognized the importance 

of divorcing point, but the authenticity of code is very hard 

to challenge. Hence shear capacity equations are developed 

in both ACI and Zsutty’s patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Detailed summary of Test Results 

Sr.# Beam d (in) b (in) ρ (%) a/d f (psi) vcr  (psi) vu  (psi) 

1. B1 a/d 10.18 6.6 0.952 1.00 3550 257.99 630.96 

2. B2 a/d 10.18 6.3 0.998 1.50 3550 210.12 454.75 

3. B3 a/d 10.18 6.5 0.967 2.00 3550 174.01 306.16 

4. B4 a/d 10.18 6.0 1.048 2.50 3550 154.63 203.85 

5. B5 a/d 10.28 6.1 1.021 3.00 3550 141.89 183.61 

6. B6 a/d 10.18 6.0 1.048 3.50 3550 127.75 182.28 

7. B7 a/d 10.28 6.0 1.021 3.75 3550 122.42 169.32 

8. B1E 10.18 6.0 0.524 3.75 2600 79.027 127.75 

9. B2E 10.26 6.0 0.926 3.50 3000 111.24 144.54 

10 B3E=B6 a/d 10.18 6.0 1.048 3.5 3550 127.75 182.28 

11. B4E 10.25 6.0 1.138 3.00 4000 161.950 209.561 

12. B5E 10.28 6.0 1.345 2.75 4650 174.33 251.62 

13. B6E 10.18 6.1 1.546 2.50 5250 186.834 265.226 

14. B7E 10.28 6.1 0.51 2.50 2250 109.204 171.477 

15. B8E 10.26 6.1 0.926 2.25 2550 124.68 222.43 

16. B9E=B3 a/d 10.18 6.5 0.967 2.00 3550 162.5 306.16 

17. B10E 10.45 6.0 1.116 1.75 4650 198.58 433.28 

18. B11E 10.28 6.3 1.281 1.50 4300 254.31 581.96 

19. B12E 10.38 6.3 1.468 1.25 4700 295.41 721.59 

20. B1 ρ 10.26 6.1 0.607 3.00 4200 104.8 147.06 

21. B2 ρ 10.36 6.3 0.873 3.00 4200 115.69 153.69 

22. B3 ρ = B4E 10.25 6.0 1.138 3.00 4000 161.95 209.56 
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Fig. 9:   Shear strength vs (a/d) 
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Fig. 10:   Relative beam strength 

Statistical method of least squares was used. Linear 

regression generates the following equations in ACI pattern.  

for a/d ≥ 2.5   

           vcr )a
d

 (02126 fc´02.1                   (8) 

               vu )a
d( 26770 fc´54.1                    (9) 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

for a/d < 2.5          

            vcr )a
d

( 18050 fc´36.1              (10) 

 vu  )a
d

(  64660  )a
d

( 64660 fc´042.0           (11) 

For all values of a/d 

                 vcr )a
d( 197000 fc´12.1                 (12) 

   vu  )a
d

(  61100  )a
d

( 61100 fc´0091.0             (13) 

Multiple regression generates the following equations 

in Zsutty’s pattern. 

for a/d ≥ 2.5   

     vcr  ) ( )a
d

 ((fc´)   3254.22 0.590.60.024                       (14) 

      vu 0.50.50.106 ) ( )a
d

((fc´) 1340.59                             (15) 

for a/d < 2.5         

      vcr 0.190.640.48 ) ( )a
d (12.6(fc´)                         (16) 

        vu
0.211.230.53 ) ( )a

d(23.98(fc´)                          (17) 

The developed equations can help to estimate the shear 

capacity of beams. The Zsutty’s equations only gives 

ultimate shear strength and ACI code equation only gives 

cracking strength, where as presented equations helps in 

estimating both the strengths. Moreover ACI equation does 

not recognize the importance of divorcing point where as 

these equations considered the effect of divorcing point. 

However these equations have following limitations; 

5.1 Limitations 

Developed equations (8 to 17)

values ranging from 2200 to 5200 psi. Equations are 

applicable for steel ratio ρ form ρmin to ρmax as defined by 

ACI Code. Equations are applicable for all a/d values 

ranging from 1 to 3.75. Equations are applicable for vibrated 

Table 2:  Comparison of Relative beam Strength 

Sr. # Beam a/d vcr  psi vu  psi vcr / vu Mu =Vu.a (K-in) Mfl  (K-in) Mu/Mfl 

1. Bl a/d 1.00 257.99 640.96 0.41 431.56 382.30 0.95 

2. B2 a/d 1.50 210.12 454.75 0.46 445.35 377.65 1.00 

3. B3 a/d 2.00 174.01 306.16 0.57 412.47 381.74 0.90 

4. B4 a/d 2.50 154.63 203.85 0.76 316.88 378.13 0.66 

5. B5 a/d 3.00 141.89 183.61 0.77 355.09 380.33 0.75 

6. B6 a/d 3.50 127.75 182.28 0.70 368.31 378.13 0.79 

7. B7 a/d 3.75 122.42 169.32 0.72 402.62 385.59 0.86 
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concrete only, with maximum size of aggregate as 3/4”. 

Equations are applicable for beams reinforced with grade 60 

deformed bars. Equations are applicable to two point loaded 

beams, but can be used for UDL by replacing (d/a) with 

(Vd/M).  

6. Validity of developed equations 

The comparison of developed equations with the 

existing equations /experimental values is presented in 

Figures 11 to 14. Equations were developed in two patterns, 

i.e. ACI and Zsutty. Figure 11 shows that equation 

developed according to ACI pattern for all values of a/d is 

slightly conservative to actually observed cracking shear. 

Equations developed for both sides of divorcing point are 

not in total agreement with the actual shear. For a/d ≥ 2.5 it 

agrees with actual but for a/d <2.5 the developed equation 

drastically under estimate the cracking shear. Since ACI 

code do not recognize the concept of divorcing point hence 

developing independent equations for both sides of 

divorcing point is un-necessary. It is also evident that ACI 

code equation is quite conservative in estimating the 

cracking shear. 
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Fig. 11:  Comparison of Cracking Shear (ACI) 
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Fig. 12:  Comparison of Ultimate Shear (ACI) 

100

200

300

400

500

600

700

1 1.5 2 2.5 3 3.5 4

a/d

v
u
 
(P

si
)

Vu actal

Zsutty

Zsutty pattern

 

Fig. 13:  Comparison of Ultimate Shear (Zsutty) 
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Fig.14:  Comparison of Cracking Shear (Zsutty) 

ACI code had not formulated any equation for ultimate 

shear; however a maximum limit of 3.5 √ fc΄ is specified. 
Treating this value as ultimate shear (represented by a 

straight line in Figure 12), equations are developed for 

ultimate shear capacity and are graphically represented in 

Figure 12. Both equations, i.e. for all values of a/d and 

different relations for two sides of divorcing point are in 

close agreement to actual value, whereas ACI limiting 

criteria gives very low values for a/d < 2.5. From equations 

(11) & (13) it is evident that concrete crushing strength have 

negative impact on ultimate shear capacity, which is totally 

illogical, that means ACI pattern equations are not suitable 

for estimating ultimate shear capacity. 

On the other hand Zsutty only developed relations for 

ultimate shear. Figure 13 shows that relation developed in 

Zsutty’s pattern is in very close agreement with the actual 

shear strength; where as Zsutty’s equation is conservative in 

estimating the ultimate shear capacity. For cracking shear 

developed equation (graphically shown in Figure 14) is also 

in very close agreement with the observed values. 

2.2 Conclusions 

ACI pattern equation was developed using method of 

least squares (linear regression). This method is not suitable 

for developing correlation between four variables i.e. v, d/a, 

fc΄ & ρ. That is why equation seems to have imperfections 

and presented a poor correlation for a/d < 2.5. According to 
ACI contribution of fc΄ is about 80 to 90 % of the total shear 
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before any cracking is observed, which is against the Kani's 

as well as our experimental research. 

Residual shear strength of a beam after shear cracking 

remains constant as a/d is decreased upto 2.5, then it 

increases rapidly as a/d is further decreased below 2.5 

showing minimum capacity at a/d = 2.5. 

Cracking shear capacity should be evaluated according 

to ACI pattern equation (12) for all values of a/d (without 

any mention of divorcing point), because this equation itself 

takes care of divorcing point as its slope automatically 

changes at this point. 

Ultimate shear capacity should be estimated using 

equations (15) & (17) with due consideration of divorcing 

point. 

Both ACI code and Zsutty’s equations give 

conservative value especially for a/d < 2.5. Beam design 
may be more economical if shear capacity supplied by 

equations (12), (15) and (17) is kept in view. 
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