
Pak. J. Engg. Appl. Sci. Vol. 25 July, 2019 (p. 80–88)

80

Evaluating the Impact of Pair Testing on Team
Productivity and Test Case Quality – A Controlled

Experiment
Nosheen Qamar

*1,2
, Ali Afzal Malik

2

1. Department of Computer Science, University of Lahore, Defense Road, Lahore, Pakistan

2. Department of Computer Science, National University of Computer & Emerging Sciences, Faisal Town,

Lahore, Pakistan

 Corresponding Author: Email: nqz786@gmail.com

Abstract

One of the main objectives of software testing is to uncover the maximum number of faults while

consuming the least amount of resources. This research is an attempt to investigate the utility of an

unconventional testing technique called pair testing in achieving this goal. In pair testing, two

individuals sit together at one keyboard to test the software. An empirical study was designed and

conducted to evaluate the performance of pair testing vis-à-vis conventional testing. Six pairs of testers

divided into two different groups - one using pair testing and the other using conventional testing -

participated in a controlled experiment involving three separate projects. The productivity of the

groups and the quality of their work were quantitatively evaluated and compared. The results of

comparison revealed that the group using pair testing spent more effort but the quality of its work was

better.

Key Words: Black box Testing, Empirical Study, Equivalence Partitioning, Pair Testing,

Software Testing, Testing

1. Introduction

Despite its challenging nature, software

testing is an integral part of the software

development lifecycle (SDLC) [1]. Its primary

objective is to find anomalies during the execution

of software [2]. Generally, two different types of

methods are employed to test the quality of

software viz. white box testing and black box

testing. White box testing techniques focus on the

program structure [3]. Black box testing

techniques, on the other hand, deal with system

functionality without looking at internal structure

[4].

Equivalence partitioning [1,2,3] is one of

the most widely used black box testing techniques.

It is based upon the idea that the domain of a

program can be split into a finite number of valid

and invalid classes called equivalence classes.

Members of the same equivalence class exercise

the same functionality(i.e. produce same output).

Therefore, only one test case is required for each

equivalence class. This eventually reduces the

number of test cases required for

functional/architectural coverage– a metric used

for measuring the proportion of total features that

are actually tested[5]. These test cases, however,

are designed and documented prior to the testing

phase and a tester cannot deviate from these in

traditional black box testing [6].

In contrast to the traditional black box

testing techniques, Exploratory Testing (ET) [7]

lays emphasis on experience-based testing during

which a tester’s primary focus is on the execution

of tests with minimum planning (i.e. without

creation of pre-defined test cases). The activities

of designing, execution, and learning from the

results of executed tests (used later for designing

more tests) are performed simultaneously [8]. The

number of practitioners taking interest in this error

guessing approach [7][9] has grown recently with

an increase in the number of reports and studies

highlighting the benefits of exploratory testing

[8][10][11][12].

Despite the fact that a lot of work has been

done on techniques, languages, and tools to

improve the quality of software, around $500

billion are lost every year due to poor software

quality [13][14]. According to Santhanam and

Hailpern, testing and debugging make up fifty to

seventy percent of the total project cost [15].

These figures indicate a lot of room for further

improvement.

Past research (discussed in the following

section) has shown that a significant improvement

in software quality and development productivity

can be obtained by using the concept of working

in pairs i.e. two individuals sitting side by side at

mailto:nqz786@gmail.com

Pak. J. Engg. Appl. Sci. Vol. 25, July., 2019

81

the same machine while doing programming [16],

designing [26][27][28], or documentation [30].

These improvements provided the motivation for

us to evaluate the utility of working in pairs while

performing exploratory black box testing using the

equivalence partitioning technique.

An empirical study was performed to

comparethe performance of pair /unconventional

testing (exploratory black box testing using

equivalence partitioning performed by testers in a

pair)with traditional/conventional testing

(exploratory black box testing using equivalence

partitioning performed by testers working alone).

A controlled experiment involving six pairs of

testers working on three different projects was

designed and conducted to determine whether the

benefits of working in pairs reported for other

phases of the SDLC are applicable to the testing

phase as well.

The rest of the paper is structured as

follows. The next section gives a brief summary of

related work done in this area. Section 3 contains

the details of our experiment and the results

obtained. Threats to validity of these results are

discussed in section 4. Finally, section 5 concludes

this paper by highlighting the main findings and

presenting directions for future work.

2. Related Work

The concept of developing software while

working in pairs has been experimented with in

different phases of the SDLC. The implementation

phase, however, has received the most attention in

this regard. The first study on collaborative

programming (commonly known as pair

programming) was conducted by Nosek [17].

During this study it was observed that

collaborative work improved the efficiency of

coding. This result was corroborated by other

research.

According to Williams et al. [18], for

instance, pair programming was 40-50% faster as

compared to solo programming. Lui and Chan,

also, reported 5% savings in time due to pair

programming [19]. Similarly, Müller observed that

pair programming halved the time spent on quality

assurance activities [20]. Other studies [21-24]

highlighted even more benefits of pair

programming e.g. higher team spirit, enhanced

learning, knowledge management, and higher

product quality.

A few researchers, however, could not find

supporting evidence. Empirical research by

Nawrocki and Wojciechowski, for instance,

revealed that there are no noteworthy differences

in development times of traditional groups and

groups employing pair programming [25].

Some research has also been done on pair

design in which a duo of designers works on the

same machine. One member of this duo generates

the design while the other monitors its quality

[26]. An experiment conducted in an academic

setting using computer science students [27]

revealed that, as compared to solo designing, pair

designing produces a good quality design

document in less time. These results were partially

supported by an empirical study carried out in a

Spanish company. Here they found that, while it

took more time to complete the task when using

pair designing, the quality improved more than

15% [28].

Limited research has also been carried out

to investigate the dividends of documenting

software in pairs. Introduced by Scott Ambler

[29], pair documentation involves two individuals

working collaboratively while writing the software

specifications. One member of the pair writes the

requirements while the other reviews those

requirements. An empirical study conducted on

pair documentation [30] revealed that the team

using pair documentation was not only more

productive than the team using traditional

documentation but it also produced a better quality

software requirements specification document.

Similar in concept to pair programming,

pair design, and pair documentation, pair testing

employs two individuals sitting together at one

keyboard - one performs the testing and the other

reviews it [31]. To the best of our knowledge, so

far only one informal study [31] has been

conducted on pair testing. The author of that study

was a black box tester and different developers

(who were working on test-driven development

projects) wanted to learn about testing from him.

The author involved them in pair testing by pairing

up with one developer at a time. First, the pair

decided the area of the program that needed to be

tested and established a goal of finding bugs using

exploratory testing. Later, the author performed

exploratory testing and the developer played the

role of reviewer and vice versa. The author of this

study reports that by implementing pair testing he

learned a lot about the application itself. He also

found that, with collaboration, it is very easy to

find failures that occur occasionally. These

findings, however, come from an informal study.

They are not rooted in a controlled experiment.

This research tries to investigate the utility of pair

testing by conducting a controlled experiment. The

next section describes the design and results of this

experiment in detail.

Evaluating the Impact of Pair Testing on Team Productivity and Test Case Quality – A Controlled Experiment

82

3. Experiment

Fig. 1 presents a pictorial summary of the

design of our experiment. It shows the main steps

of the experiment and the sequence in which these

were carried out. The following subsections

describe each of these steps in detail.

Fig. 1: Experimental Design

3.1 Metrics Selection

The selection of appropriate metrics to

analyze and compare the productivity of teams and

quality of produced test cases was the first step of

our experiment. As shown in Equation (1), the

effort (which is usually measured in person hours)

of each team of two members was calculated by

aggregating the time spent by its members on

testing their assigned project. Information related

to time spent was extracted from the time logs

filled by the teams as shown in Fig. 2. The value

of effort was, in turn, used to calculate the

productivity of a team (Equation (2)). The total

number of unique test cases produced by a team

were divided by the effort it spent to determine its

productivity.





n

i i
sPersonHour

1

Effort (1)

Where

n = number of members working on a project

Productivity = Unique Test Cases Produced/Effort

 (2)

Three metrics i.e. architectural coverage,

number of unique detected failures, and test case

conformity [32] were used to get insight about the

quality of test cases produced by each team.

Equations (3)–(5) show the formulas for obtaining

the values of these metrics.Tested Features refer to

the number of features tested by a team andTest

Case Attributes are the attributesof test case

template which team members need to provide to

document a test case (e.g. test case id, module

name, test case title, etc.). Fig. 3 shows a sample

test case documented using our test case template.

Architectural Coverage = (Tested

Features/Total Features) * 100 (3)

Unique Detected Failures = Failed Test Cases (4)

Test Case Conformity = (Total Correct Test Case

Attributes/Total Test Case Attributes) * 100 (5)

Obtaining values of architectural coverage

and unique detected failures were relatively

straightforward. The former uses a ratio of two

counts while the latter represents a simple count.

Information related to failures, for instance, can be

obtained easily by glancing at the test cases

documented using the template. Determining test

case conformity, however, requires detailed

assessment of a test case. This detailed assessment

was done manually by one of the authors. During

this assessment, this author checked whether the

subjects documented test cases based on the given

template i.e. all the required fields (e.g. Test Case

ID, Module Name, Test Title, Description, etc.)

were filled properly.

Fig. 2: Time Tracking Form (Filled Sample)

Pak. J. Engg. Appl. Sci. Vol. 25, July., 2019

83

Fig. 3: Test Case Template (Filled Samples)

3.2 Projects Selection

Three commercial web-based projects

representing three different domains were selected

for our experiment. Table I provides a brief

overview of these projects. Original project names

have been replaced with pseudonyms for reasons

related to confidentiality.

The first project - mySchool - is a full-

fledged school management system. It includes

different student management features e.g. student

registration, transfer, leaves, attendance,

enrolment, etc. It also covers HR management

(e.g. teacher registration, transfer, class/section

assignment, re-joining, leaves, etc.), billing (fee

submission, fee calculation, fee statements, etc.),

grading (grade entry, results calculation, report

cards generation, etc.), and various kinds of

reports.

The second project - eShop - is an online

shopping portal. In this portal, different products

are catalogued under specified categories and sub-

categories. Customers can, inter alia, search

products, add them to the shopping cart, and

checkout. A variety of payment options are

provided at the time of checkout.

The third and last project - resMenu - is a

web application for restaurants and takeaways.

Using this online application, customers can book

their table if they prefer to dine-in. Customers

preferring home delivery can select food items

from given menus and place their orders. Apart

from online payment, cash-on-delivery is also

accepted.

As is clear from the number of modules and

features shown in Table I, the mySchool project is

the biggest of the three. It is also the most complex

of the three projects. All of these three projects

have undergone multiple development iterations

and each project was developed by a team

comprising four to seven software developers.

Table 1: Project Details

Project

Pseudonym
Domain

No. of

Modules

No. of
Feature

s

Source Lines of
Code

mySchool Education 44 331 659,397

eShop Ecommerce 19 152 547,397

resMenu Hospitality 16 132 101,179

The primary reason for selecting these

projects was the deep familiarity of one of the

authors with these projects. This knowledge is

required to evaluate the quality of test cases

produced during the experiment. One of the

authors has personally worked on these projects

and has, therefore, in-depth knowledge of each

project’s internal structure and external behavior.

Besides this, as mentioned earlier, each of these

projects has undergone multiple iterations and is,

therefore, mature enough. This maturity is

required to make bug identification a challenging

task for the experiment's subjects.

3.3 Subjects Selection and Group
Formulation

After the selection of projects, the next step

was the selection of subjects and their grouping.

Twelve individuals were selected for this

Evaluating the Impact of Pair Testing on Team Productivity and Test Case Quality – A Controlled Experiment

84

experiment. Four of these twelve were

professional Testing/Quality Assurance (QA)

engineers currently working in the industry with

roughly the same experience (i.e. around 1 year)

and the same educational qualification (i.e.

Bachelors degree in Computer Science). The

remaining eight participants were final-year

undergrad computer science students. All of these

students had studied (and passed) the "Software

Engineering" and "Software Testing & Quality

Assurance" courses. Moreover, all of these

students were enrolled in their final year projects

(also known as capstone projects).

The twelve subjects were divided into two

groups – Experimental Group and Control Group.

The Experimental Group had to use pair testing

while the Control Group had to perform

conventional testing. Fig.4 depicts group

formulation and project assignment. As shown in

this figure, a total of six teams (with two randomly

chosen subjects in each team) were formed. Three

of these six teams were assigned to the

Experimental Group while the remaining three

were assigned to the Control Group. Each group

contained one team of professionals and two teams

of students. In order to evaluate the difference

between conventional and pair testing, every

project was assigned to one team from each group.

The relatively bigger and more complicated

mySchool project was assigned to teams

containing professionals while the eShop and

resMenu projects were assigned to student teams.

Fig. 4: Group Formulation and Project

Assignment

3.4 Groups Training

Before starting the actual experiment, both

groups had to be trained. Separate two-hour long

training sessions were arranged for each team. All

of these training sessions were conducted by the

same person i.e. one of the authors who had

personally worked on these projects before. The

goal of these training sessions was to provide an

overview of the assigned project, required

outcomes, test case template, and general

experiment guidelines.

As per the guidelines, the teams in the

Experimental Group had to perform pair testing. In

other words, they had to work collaboratively

using the same computer and the team members

had to share their thoughts/ideas with each other

while testing the project. On the other hand, teams

belonging to the Control Group had to perform

conventional testing. Features would be divided

among team members and each team member

would work independently of the other and,

therefore, would be responsible for his/her own

part. After completion of work, these team

members would merge their respective parts and

submit one complete document.

All teams were asked to perform only

exploratory blackbox testing of their assigned

projects using the equivalence class partitioning

technique. All features were supposed to be tested

with possible valid and invalid classes.

3.5 Experimental and Control Group
Produced Test Cases

After providing the training, both groups

were given 10 working days to test their respective

projects. Upon reaching this deadline, all teams

submitted their test case documents along with

their duly filled time logs.

3.6 Test Cases Analysis and Results

Compilation and analysis of results was the

last step of this experiment. The two groups were

compared with respect to their effort, productivity,

and test cases' quality.

Table II depicts the data related to effort. It

shows the person hours spent by each team in

testing its respective project. This data clearly

indicates that, for each project, the team using pair

testing spent more effort than the team performing

traditional testing. The proportion of the increase

in effort is more for the smaller projects (resMenu

and eShop) than for the larger project (mySchool).

The absolute value of the increase, however,

remains between 2 to 4 person hours. This may be

Pak. J. Engg. Appl. Sci. Vol. 25, July., 2019

85

an indication that individuals participating in pair

testing need some minimum amount of time to jell

together.

Table 2: Comparison w.r.t. Effort

Project

pseudonym

s

Pair Testing Effort

(Person Hours)

(Experimental

Group)

Solo Testing

Effort (Person

Hours)

(Control

Group)

mySchool 25 22.5

eShop 11 7.5

resMenu 10 7

A comparison of the productivity of teams

(see Equation (2)) in the Experimental Group and

the Control Group is shown in Fig.5. In only one

of the three projects (i.e. eShop) the team

performing traditional testing is slightly more

productive than the team using pair testing. The

difference in productivity is not much for smaller

projects. For the larger project (i.e. mySchool),

however, this difference in productivity is much

more pronounced - the team using pair testing is at

least three times more productive.

One explanation of this large difference in

productivity for the larger project and small

difference in productivity of smaller project could

be the synergy developed between the testing pair.

Initially, the testing pair needs some time to jell

and develop a rapport. However, once this

understanding has developed and frequencies have

matched, the pair becomes more than the sum of

its parts.

Fig. 5: Productivity Comparison

Information regarding the test cases

produced by different teams in the two groups is

summarized in Table III. This information is

plugged in Equations (3)–(5) to determine the

values of the three quality metrics for the output of

each team. The comparison of the Experimental

Group and the Control Group with respect to

quality is depicted in Fig.6 - 8. As is evident from

these figures, in all three areas i.e. architectural

coverage, defect identification, and test case

conformity, the team using pair testing

outperforms the team using traditional testing. In

two out of three projects, the architectural

coverage achieved by the pair testing team is

almost twice that achieved by the team performing

traditional testing. The same holds true for failure

identification. For two out of three projects, the

pair testing team identifies at least twice as many

failures as the team performing traditional testing.

The gains in test case conformity range from about

17% (eShop) to 63% (resMenu).

The reason for this improvement in the

quality of test cases produced by pair testers is

obvious: two pairs of eyes are better than one in

detecting problems and performing run-time

quality assurance of work at hand.

Fig. 6: Architectural Coverage Comparison

Fig.7: Unique Detected Failures Comparison

Evaluating the Impact of Pair Testing on Team Productivity and Test Case Quality – A Controlled Experiment

86

Fig. 8: Test Case Conformity Comparison

Table 3: Details of Test Cases

Project

Pseudonym
TF

Tested

Features
Total TC Passed TC Failed TC CTCA TTCA

EG CG EG CG EG CG EG CG EG CG EG CG

mySchool 331 156 73 312 79 308 77 4 2 3208 643 3852 1068

eShop 152 47 40 94 76 91 75 3 1 996 743 1128 987

resMenu 132 73 37 73 48 70 46 3 2 657 322 876 700

(TF=Total Features, TC=Test Cases, EG= Experimental Group, CG=Control Group, CTCA=Correct Test Case Attributes, TTCA=Total Test Case Attributes)

4. Threats to Validity

Although the results of our experiment

seem to be in favor of pair testing, some factors

must be kept in mind while interpreting these

results. Firstly, the subjects who had previously

used only traditional testing could have gotten

excited with this new approach to testing (i.e. pair

testing). This excitement may have led to better

productivity. Secondly, differences in personal

characteristics such as learning ability,

intelligence, and individual interest in testing and

quality assurance may also affect the results.

Furthermore, past experience of working together

may play a role. Team mates who are students

may have worked together previously on one or

more course projects thus developing a rapport.

Similarly, team mates who are professionals may

have developed an understanding by virtue of

being involved together in one or more real-life

projects in the past.

5. Conclusions and Future Work

The aim of this research was to

quantitatively evaluate the utility of pair testing

vis-à-vis traditional testing. A carefully designed

controlled experiment was conducted for this

purpose. The results of our controlled experiment

reveal that although the group using pair testing

spent more effort the quality of its work was

better. It achieved more architectural coverage,

identified more failures, and had better test case

conformity.

This research can be extended in a number

of different ways. Firstly, the experiment designed

in this research can be replicated with industrial

strength projects done completely by professionals

operating in an industrial environment. Secondly,

utility of a variety of different white-box and black

box testing techniques can be investigated while

testing in pairs. Thirdly, other aspects of quality

such as the severity of detected failures may be

looked at. Last, but not the least, effects of

variations in project domain, novelty, and size on

the output of pair testing may also be explored.

6. References

[1] Sommerville, I. (2011). Software

Engineering, Addison-Wesley, USA.

[2] Myers, G.J., Badgett, T., Thomas, T.M.,

Sandler, C. (2004). The Art of Software

Testing, John Wiley & Sons, USA.

[3] Kaner, C., Batch, J.,Pettichord, B. (2002).

Lesson Learned in Software Testing,

Addison-Wesley, New York.

[4] Nidhra, S., Dondeti, J. (2012). Black box

and White box Testing Techniques - A

Literature Review, International Journal of

Pak. J. Engg. Appl. Sci. Vol. 25, July., 2019

87

Embedded Systems and Applications, Vol.

2, No. 2, pp.29-50.

[5] Wong, W.E., Sugeta, T., Li, J.J.,

Maldonadoc, J.C. (2003). Coverage Testing

Software Architectural Design in SDL,

Computer Networks, Elsevier, Vol. 42, No.

3, pp. 274 –283.

[6] Irena, J. (2009). Software Testing Methods

and Techniques, IPSI BgD Transactions on

Internet Research, Vol. 5, No. 1, pp. 30-41.

[7] Bach, J. (2004). Exploratory Testing, The

Testing Practitioner, UTN Publishers.

[8] Beizer, B. (1990). Software Testing

Techniques, Van Nostrand Reinhold.

[9] Vaga, J., Amland, S. (2002). Managing

High-Speed Web Testing, Software Quality

and Software Testing in Internet Times,

Springer.

[10] Lyndsay, J., Eeden, N.V. (2016).

Adventures in Session-Based Testing .

Available:http://www.workroom-

productions.com/papers/ AiSBTv1.2.pdf.

[11] Wood, B., James, D. (2003). Applying

Session-Based Testing to Medical Software,

Medical Device & Diagnostic Industry, Vol.

25, No. 5, pp.90.

[12] Tuomikoski, J., Tervonen, I. (2009).

Absorbing Software Testing into the Scrum

Method, Proc. 10th Int’l Conf. Product-

Focused Software Process Improvement,

pp.15-17.

[13] Jones, C. (2011). Software Quality in 2011:

A survey of the State of the Art. Available:

http://www.asq509.org/ht/a/GetDocumentA

ction/id/62711.

[14] Lonetti F., Marchetti, E. (2018). Emerging

Software Testing Technologies, Advances

in Computers, Vol. 108, No. 1, pp. 91-143.

[15] Santhanam P., Hailpern, B. (2002).

Software Debugging, Testing, and

Verification, IBM Systems Journal, Vol. 41,

No. 2, pp.4-12.

[16] Biscione F., Garzuoli, M. (2016). Pair

Programming and Other Agile Techniques:

An Overview and a Hands-on-Experience,

Proc. 4th International Conference in

Software Engineering for Defence

Applications, Springer, pp. 87-101.

[17] Nosek, J.T. (1998). The Case for

Collaborative Programming,

Communications of the ACM, Vol. 41 No.

3, pp. 105-108.

[18] Williams, L., Kessler, R.R., Cunningham,

W., Jeffries, R. (2000). Strengthening the

Case for Pair Programming, IEEE Software,

Vol. 17, pp. 19-25.

[19] Lui, K.M., Chan, K.C.C. (2003). When

Does a Pair Outperform Two Individuals,

Proc. International Conference on Extreme

Programming and Agile Processes in

Software Engineering, pp. 225-233.

[20] Müller, M.M. (2003). Are Reviews an

Alternative to Pair Programming, Proc. 7th

International Conference on Empirical

Assessment in Software Engineering, pp.

335-351.

[21] Williams, L. (2001). Integrating Pair

Programming into a Software Development

Process, Proc. 14th Conference on Software

Engineering Education and Training, pp.19-

21.

[22] Williams, L., Shukla, A.,Antón, A.I. (2004).

An Initial Exploration of the Relationship

between Pair Programming and Brooks'

Law, Proc. Agile Development Conference.

[23] Jensen, R.W. (2003). A Pair Programming

Experience, CrossTalk, Journal of Defense

Software Engineering, Vol. 16, pp. 22 - 24.

[24] Cockburn, A., Williams L. (2001). The

Costs and Benefits of Pair Programming,

Extreme Programming Examined, ACM

Press, 2001.

[25] Nawrocki, J., Wojciechowski, A. (2001).

Experimental Evaluation of Pair

Programming, Proc. 12th European

Software Control and Metrics Conference,

UK.

[26] Bellini, E., Canfora, G., García, F., Piattini,

M.,Visaggio, C.A. (2006). Pair Designing

as Practice for Enforcing and Diffusing

Designs Knowledge, Journal of Software

Maintenance and Evolution, Vol. 17, No. 6,

pp. 401-423.

[27] Canfora, G., Cimitile, A., García, F.,

Piattini, M., Visaggio, C.A. (2006).

Performances of Pair Designing on

Software Evolution: AControlled

Experiment, Proc. 10th European

Conference on Software Maintenance and

Reengineering, IEEE, pp. 198-205.

[28] Canfora, G., Cimitile, A., Garcia, F.,

Piattini, M., Visaggio, C.A. (2007).

http://www.workroom-productions.com/papers/%20AiSBTv1.2.pdf
http://www.workroom-productions.com/papers/%20AiSBTv1.2.pdf
http://www.asq509.org/ht/a/GetDocumentAction/id/62711
http://www.asq509.org/ht/a/GetDocumentAction/id/62711

Evaluating the Impact of Pair Testing on Team Productivity and Test Case Quality – A Controlled Experiment

88

Evaluating performances of Pair Designing

in Industry, Journal of Systems and

Software, Elsevier, Vol. 80, No. 8, pp.

1317–1327.

[29] Ambler, S.W. (2002). Agile Modelling:

Effective Practices for extreme

Programming and the Unified Process, John

Wiley & Sons.

[30] Waqas, M., Malik, A.A., Qamar, N. (2016).

Empirical Study on Pair Documentation,

FAST-NU Research Journal, Vol. 2, No. 2,

pp. 1-8.

[31] Kohl, J. (2004). Pair Testing: How I

Brought Developers into the Test Lab,

Better Software Magazine. Available:

http://www.kohl.ca/articles/pairtesting.pdf.

[32] Harry, M.S. (2018). Measuring the

Effectiveness of a Test. Available:

http://www.mathematik.uni-

ulm.de/sai/mayer/soqua04/slides/sneed.pdf.

http://www.kohl.ca/articles/pairtesting.pdf
http://www.mathematik.uni-ulm.de/sai/mayer/soqua04/slides/sneed.pdf
http://www.mathematik.uni-ulm.de/sai/mayer/soqua04/slides/sneed.pdf

