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Abstract 

The power systems are facing a gradual increase in electrical load at different hours of the day and on 

different buses of the network. This situation can create the problem of demand/supply mismanagement 

in the power system. Therefore, the power systems need fast auxiliary services to keep power 

management, stability, and reliability in the network. Conventionally, power systems have own 

dedicated computing facility for executing auxiliary services, however, data centers are among the 

largest energy consumption clients for the power systems and have the capability to provide enough 

computational resources to the power system when required. This paper proposes an Emergency 

Auxiliary Services (EAS) model for power systems and data centers to work combinedly with mutual 

benefits. A dynamic Service Level Agreement (SLA) is introduced along with an EAS job scheduling 

algorithm that motivates data center to run power system jobs on priority and effectively during 

emergency conditions and maintain data center revenue. The EAS includes Optimal Power Flow (OPF) 

analysis, bus centrality index, and transmission line centrality index. The simulations are performed on 

real workload of a data center integrated with the IEEE 30-bus system to assess the performance of the 

proposed model. The results illustrate that the priority execution EAS on data centers has a minimal 

impact on overall energy consumption and on other cloud computing jobs’ time of execution. Moreover, 

the dynamic SLA compensates the data center revenue loss due to prior execution of the EAS. 

Therefore, the SLA encourages the data center operators to execute EAS on priority. 
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1. Introduction 

Today, one of the biggest problems in the 

world is energy crises. The problem becomes 

worst due to the rapid growth in the size of data 

centers. The data centers of Google consume more 

than 250 MWh of energy in a month that is more 

than the per month energy consumption of whole 

Salt Lake City [1]. The high energy demand of 

Google’s data center is due to the growing usage 

of the internet and cloud computing services. The 

data center has hundreds to thousands of servers 

carrying out run time analysis of the requested 

data. The intensified data analysis requires 

increased energy consumption that results in data 

centers’ huge electricity bills, which data center 

must pay to the power supplying agencies [2]. 

Due to the increased Transmission Line 

Failures (TLFs), the voltage at the consumer’s side 

will reduce, resulting in a low voltage profile 

throughout the power system. The data centers can 

fulfil the intensive computational requirements of 

modern power systems. The computational 

services provided by the data center to the power 

system for stable and reliable operation under 

emergency is known as Emergency Auxiliary 

Services (EAS). Conventionally, a bunch of 

servers or clusters are dedicated to the power 

system for the EAS. However, servers’ dedication 

has some major drawback, such as (a) energy loss 

due to the idle resources, (b) high computing cost 

due to dedicated servers, and (c) underutilization 

of computing resources. Moreover, the EAS can 

arrive at any time instant and the EAS job length is 

variable; for example, if the EAS is coming after 

every 1 hour for 10 minutes and 100 CPUs are 

dedicated, then a total of 100×100W=10kW of 

power or 36 megajoules of energy will be 

consumed by the idle CPUs in every hour. 

In the past decade, most of the researchers 

have investigated the methods toward the 

reduction in power consumption of data centers 

along with the energy cost optimization. For 

instance, Pedram in [8] proposed a model to 
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minimize cost based on electricity price and cloud 

workload. In [9], the authors studied the energy 

cost reduction problem of the data center under 

multi-electricity market environment and 

renewable energy. The authors in [10] and [11] 

focused on renewable energy to tackle the energy 

cost problem. Likewise, the aforesaid problem is 

handled through the Service Level Agreement 

(SLA) and workload distribution in Ref. [12]. 

Moreover, the workload distribution criterion 

depends on the pricing variation. Furthermore, 

energy saving relies on the selective and flexible 

conditions of SLA. In [12], the model was 

dependent on load variations due to climate 

conditions, which is not an optimum approach 

because the climatic condition is not the only 

monitoring constraint. Wang et. al. [13] 

approached the problem of cost minimization via 

deregulated energy cost for data centers. The EAS 

between the power system and data center was not 

incorporated in aforesaid research work. A novel 

EAS scheme is provided for optimizing power 

flows, increasing the reliability of the power 

system, minimizing Transmission Line Losses 

(TLLs), maximizing data center revenue under 

various pricing, and incorporated a real-time 

bidirectional SLA for mutual benefits. The 

researchers also emphases on power consumption 

estimation of the servers for performing various 

processing tasks. The analysis of power and 

energy reduction in multi-core processes using 

Dynamic Frequency Scaling (DFS) is presented in 

[14]. In [14], Congfeng Jiang discussed that the 

utilization factor of the central processing unit is 

not always an indicator for the calculation of 

power consumption. The total power consumption 

on storing various applications is elaborated in 

[15]. 

Although the aforementioned models 

provide optimized solutions for reducing power 

consumption, they are unable to incorporate the 

effect of energy reductions in the data center 

revenues. Moreover, the cost reduction models are 

not analysed in the above-mentioned energy 

reduction schemes. Furthermore, the models were 

unable to consider the effects of power delivered 

on the data center economics. To the best of our 

knowledge, the literature studies and reports lack 

the mechanism that used the data center for the 

fast execution of the EAS for the power system, 

such as OPF and identification of endangered 

buses and transmission lines. Moreover, no SLA 

between the power system and data center exist to 

tackle the emergency situation of the power 

system. 

In [16], the authors proposed the Auxiliary 

Services Model (ASM) for the mutual benefits of 

the power system and data center for the first time. 

The idea was to use the computational capability 

of the date centers for the fast execution of power 

system jobs instead of using dedicated servers 

rooms. In the previous paper, the problem was 

addressed and solved in general terms, such as: (a) 

how the power system jobs will be scheduled and 

which job scheduling algorithm will be 

appropriate, (b) what is the impact of power 

system jobs on the data center operation, such as 

power consumption, makespan, number of 

preempted jobs, queue time, and resource 

utilization, and (c) what is the impact on the 

revenue of the data center and how an SLA can be 

defined between the data center and the power 

system to maximize data center’s revenue and 

ensure the power system reliability.  

The model presented in this paper is the 

continuation of our previous work to explore the 

problem further for the emergency scenarios only. 

The emergency means that the job of the power 

system cannot be delayed or pre-empted and must 

be execute on highest priority. This case involves 

the preemption of other data center jobs as the 

percentage workload in the data center is often 

above 100%, which means jobs are in queue to be 

executed. If certain jobs of the data center will be 

preempted, then the job delaying penalty will be 

different due to different types of jobs and SLAs. 

Therefore, in this paper, we evaluated and 

compares four known job delaying penalty 

calculation schemes. Moreover, by observing the 

historical workload pattern\ distribution of the data 

center, we further divided the whole days into 

three-time intervals of the workload, such as low-

load, medium-load, and peak-load. Therefore, the 

data center’s job preemption scenarios and penalty 

cost computations will be different in the 

aforementioned three-time intervals. Furthermore, 

the impact of EAS is analysed and compared for 

different percentage of CPU utilization. Therefore, 

the scope of the current work has a significant 

difference from our previous work. The main 

contributions of our paper are stated as:  

 An EAS model is proposed for the mutual 

benefits of the power system and data center. 

Under EAS, three auxiliary services are 

presented for the power system, namely: (a) 

OPF analysis, (b) Transmission Lines (TLs) 

centrality, and (c) bus centrality. The study is 

conducted on standard IEEE 30 bus system to 

validate the results.  

 The performance of the EAS is evaluated on 

real-world data center workload. The Shortest 
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Remaining Time First (SRTF) job scheduling 

algorithm is used for the execution of the 

workload of data center along with the EAS as 

evaluated in [16]. The EAS effect on the data 

center is elaborated during three intervals of 

the data center workload curve, such as low-

load period, medium-load period, and peak-

load period. Moreover, the EAS model is 

validated using four different job delaying 

criteria of the data center, such as no cost of 

delaying jobs, equal cost of delaying jobs, 

number of CPU utilization-based cost of 

delaying jobs, and execution time-based cost 

of delaying jobs.  

 We defined a dynamic SLA for power systems 

and data centers that will motivate the data 

center to provide EAS. The SLA ensures data 

center’s revenue maximization during 

emergency conditions for the power system. 

The SLA is tested for capricious data center 

workload, utility price, and job sizes at 

different time instances in a day. Moreover, 

the effect of an incomplete EAS is estimated 

on the data center revenue. 

The rest of our paper is organized as follows. 

Section 2 details the system modelling. Section 3 

presents a network setup. The results are analyzed 

in Section 4. Section 5 concludes the paper and 

provides directions of the future work. 

2. System Model 

The system model consists of a data center 

module and an EAS module. First, the notations 

are introduced defining dynamic SLA and revenue 

model. The architectural view of the proposed 

system model is shown in Fig. 1. We assume 

     homogenous computing machines for the 

computation of cloud workload based on a 

predefined SLA with the cloud customers and data 

center. A significant portion of the earned revenue 

is used for purchasing the power supply. On the 

other hand, the power system’s revenue is 

determined by demand-supply management, 

performance in steady-state, and stability. During 

an emergency condition, a fast computing 

workstation is required to compute EAS for 

reliability considerations. 

Therefore, in our system model, this 

intelligent computing workstation is the data 

center and a dynamic SLA is defined between the 

power system and data center to accomplish EAS. 

The system model is further divided as (a) data 

center module, (b) EAS model, (c) SLA, and (d) 

revenue model. 

2.1 Data Center Module 

The data center module consists of 

electricity pricing tariffs selection and workload-

based power consumption calculation. The 

revenue of the data center is highly dependent on 

electricity pricing and power consumption. 

Therefore, it is essential to include both entities in 

this section. The power consumption is calculated 

on an hourly basis with and without the workload 

of the EAS. 

2.1.1 Electricity Price 

There are mainly two electricity pricing 

tariffs (a) regulated and (b) deregulated based on 

power market [3]. In a regulated power market, a 

constant hourly electricity price persists 

throughout the day. Whereas, in the deregulated 

market, the price is dynamic depending upon the 

variation in the wholesale electricity market [3]. 

The deregulated power market mainly offers (a) 

time-of-use pricing, (b) real-time pricing, and (c) 

24-hours ahead pricing. 

 

 

Fig. 1: Architectural overview of the system model 
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2.1.2 Power Consumption 

The data center power consumption 

includes the power consumption of servers, 

network equipment, cooling plants, and lighting 

facilities. The power consumption is calculated 

using Eq. 1 [8]. 

   [       (     )      (      
       ) ]    (1) 

where       is the power consumed by an 

idle server,       is the peak power consumption 

(averaged) of a server. The term   
     denotes the sum of ‘on’ servers,   denotes 

the average CPU utilization of the servers, and the 

power usage effectiveness of the servers is 

denoted by Power Usage Effectiveness (PUE) [19].  

2.2  Emergency Auxiliary Services 

The power system network architecture 

contains the buses that are connected through TLs. 

The size of the network is measured by the 

number of buses present in the system. The power 

generators and electric loads are directly 

connected with the buses, which inject and 

consume power from the Power Transmission 

Network (PTN), respectively. This PTN topology 

is appropriate to analyze power flow within the 

system [20]. The three main EAS are discussed as 

follows. 

2.2.1 Optimal Power Flow Analysis 

The OPF provides optimum solution of the 

economic dispatch, voltage instability, TLLs 

problem, and directly linked with the cascading 

failures/ blackouts. In OPF model, the standard 

power flow equations are used to balance complex 

power at each bus. The complex power balancing 

is the equality constraint. The power flow on TLs 

and bus voltage limitations are inequality. The 

calculation of OPF requires some known 

parameters, such as PTN characteristics, 

generators’ limits and generation cost function, 

and PTN topology [21]. The main objective 

function of OPF is the minimization of power 

generating cost that is defined as: 

    ∑    (  )                 
 
                            (2) 

where the cost of bus   denoted by 

    corresponds to the active power    of bus   . 
The other objective functions are (a) minimizing 

the changes in control variables where the vector 

of control variables is denoted by  ,  

    ∑    |     
 |                   

  
                          (3) 

and (b) TLLs minimization using a function  : 
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In Eq. (4), the    and    are the 

corresponding voltages of the buses   and   , 

respectively. The conductance of TL   is denoted 

by    , the    denotes total TLs in the network, 

and     represents the difference in the voltage 

angles of bus   and bus  . 

Constraints of the OPF Algorithm: The power 

balance equations (equality constraints) are 

defined as: 
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(5)  

Compact Expression:  (     )     

 

The   
  and   

  are the active powers of the 

generator and load, respectively,   
  and   

  are 

the reactive powers of the generator and load, 

respectively,     and     are mutual conductance 

and susceptance, respectively, and the phasor 

angle is denoted by   . The   is the state variables 

vector and   is the parameter vector. For 

Inequality constraints, limits are imposed on all 

control variables as:      , the real power 

flow has an operating limit of |   |     , the 

operating limits on voltages are         , and 

 (     )    is the compact expression for 

inequality constraints.  

2.2.2 Transmission Lines Centrality 

We calculate TL centrality for detecting 

faults and avoiding cascading failure in the power 

system. When a single or multiple TL failures 

occur, the OPF is required to be calculated again 

to balance the PTN due to increase in AC power 

flow on other connected TLs. In TL centrality 

calculation, all such TLs are identified that can 

initiate cascade failure in the PTN. The TLs 

centrality is based on the AC power flow ratio.  

2.2.3 Bus Centrality 

The bus centrality is an equally important 

index for PTN identifying most central bus in the 

PTN [5]. The common method of centrality 

calculation is the Eigenvector centrality because in 

this centrality measure, a centrality value   is 

assigned to all isolated buses in the PTN [5]. The 
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mathematical expression of the centrality measure 

is defined as: 

PR   𝜎∑A  
 

PR 
O 
    γ                                        (6) 

where   represents the damping factor 

coefficient   𝜎   , the adjacency matrix is 

denoted by  ,       means the bus   is directly 

connected with bus  , zero otherwise, the     in 

the bus   centrality, which is adjacent to bus  , and 

out-degree of bus j is presented by   
   . The out 

degree indicates the number of buses directly 

taking power from bus j. The main issue in the 

expression of Eq. (6) is if any bus has an out 

degree equal to zero, then the expression will be 

undefined. Therefore, set   
   =1 for all such 

buses having zero out degree.  

2.3 Service Level Agreement 

The SLA is defined between the power 

system and data center to minimize the revenue 

loss for both entities when the EAS will be 

executed on the data center on priority. The data 

center’s wor load has varying job timings and the 

nature of workload is stochastic [6]. Therefore, 

some important factors are necessary to calculate 

for defining SLA, such as (a) how many 

computing servers of the data center are required 

to execute EAS at any time instant, (b) time taken 

by the data center to execute EAS, and (c) total 

bearable revenue loss for the data center to execute 

EAS on priority. 

If the EAS initiates at peak workload time, 

the data center must delay some other cloud 

computing jobs to execute the EAS request on 

priority. However, if the preemption time of other 

non-priority jobs is more than a firm time, the 

revenue of the data center can be affected. 

Moreover, a mechanism must be determined to 

predict the acceptable time delay in the execution 

of EAS on data centers. Furthermore, if the EAS 

request is delayed, how much revenue loss data 

center can bear as per the SLA. Therefore, the 

SLA incorporates all the aforementioned issues. 

The SLA between power system and data center is 

similar to Amazon Elastic Compute Cloud (EC2) 

S A definition, which states “If the data center 

face delay in a job by 10% of its total agreed 

execution time, then data center will pay back a 

penalty (service credit) of 10% of the agreed 

amount ($) for the job. Moreover, a 30% penalty 

will be imposed on the data center, if the job delay 

time is more than 10% of the agreed time” [4]. 

The aim of the SLA is to determine a marginal 

time limit that minimally disturbs power system 

reliability and operational cost of the data center.  

2.4 Revenue Model 

The data center revenue mainly revolves 

around the power consumption cost that can be 

calculated using Eq. (1). In Eq. (7), a revenue 

model is defined for the data center to execute 

EAS. The mathematical expression of the revenue 

is written as: 

  (  𝓆(𝜇)) [  
 

 
]  𝓆(𝜇) [  

 

 
]                 7  

where 𝜇 is the job service rate expressed as: 

𝜇                                             (8) 

Suppose the time (seconds) taken by a 

server to finish one job is denoted by  , then in Eq. 

(8), the     ⁄  is the jobs per sec and   denotes 

a number of ‘on’ servers in the data center. In Eq. 

(8), job failure probability is denoted by 𝓆(𝜇).   

denotes revenue loss of data center for preempting 

cloud computing jobs for priority execution of 

EAS. The data center demands cost L from the 

power system as an intensive to provide EAS. 

Further,   is the profit charges to execute EAS. In 

Eq. (7), the term (  𝓆(𝜇)) [  
 

 
] calculates the 

total earned revenue for completing EAS within 

the allocated time. The term 𝓆(𝜇) [  
 

 
]  refers 

penalty cost on a data center for delaying EAS.  

3. Network Setup 

The power system reliability experiment is 

performed on the IEEE 30-bus system. The one-

line diagram of the system is shown in Fig. 2. A 

typical server in a data center has       = 213 

watts,       = 100 watts as shown in Table 1 [17]. 

The total capacity of the IEEE 30-bus system has 

192.1 MW total generation capacity and total load 

is 189.2 MW. Another modification was necessary 

to accommodate the data center’ load. Therefore, 

the basic load of the system is reduced to 184 MW. 

 

Fig. 2: The Architecture of the modified IEEE 

30-bus system 
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The outage of TL is considered as an 

emergency condition when the power system 

required EAS for power balancing and TLLs 

reduction. The two states model of Markov is used 

to model TLs outage [7]. The Probability Density 

Function (PDF) of the exponential random 

variable is defined as:  

 ( )                                               (9) 

where   is the random variable and   ⁄  denotes 

mean of the variable. The PDF is set equal to a 

random binary decimal number x. Then Eq. (10) is 

redefined as: 

   
  (   )

 
                          (10) 

Table 1: Power Consumption per Component in a 

Data Center’s Server 

Component Peak 

Power 

(W) 

Count Total 

Power 

(W) 

CPU 40 2 80 

Disk 12 1 12 

Memory 9 4 36 

PC1 Slots 25 2 50 

Motherboard 25 1 25 

Fan 10 1 10 

System 

Total Power 

  213 

The occurrence of TL failure and 

maintenance duration is modeled by Eq. (10). 

Moreover, the electrical load is also random by 

nature; therefore, the electrical load on all load 

buses is modeled using a normal distribution with 

9.1 MW as a nominal value. For the data center’s 

power consumption data, a real workload profile is 

used that is collected from the University of New 

York (Buffalo) [17]. Table 2 lists the server 

specification. The data center workload profile is 

on the span 30 days from February 20, 2009, to 

March 22, 2009. The detailed specifications are 

given in Table 2.  

Table 2: Workload Specifications of Data Center  

Time Duration February 20
th

, 2009 – 

March 22
nd

, 2009 

Total jobs execute on 

data center 

22,385 

Total distinct servers 1,045 

Processor name 1056 Dell PowerEdge 

SC1425 

Processor speed 3.0 GHz or 3.2 GHz 

Peak performance 13 TFlop/sec 

In the dataset, the jobs were characterized 

on size and length. The jobs are further divided 

into three categories based on their length as (a) 

short (less than 1 hour), (b) long (greater than 1 

hour and less than twelve hours), and (c) very long 

(greater than twelve hours). There are more than 

22% of very long jobs present in the workload and 

are referred to as delay tolerant jobs (flexible 

deadlines). Moreover, there are total 110 hours in 

a month’s time where wor load exceeds  00% and 

jobs must wait in a queue due to unavailability of 

computing resources as shown in Fig. 3. 

Furthermore, the New York Independent System 

Operator (NYISO) is used to get the electricity 

price profile for the simulations shown in Fig. 4 

[3].  

 

Fig. 3: Total load of the data center in a month 

 

Fig. 4: Real time electricity price profile 

The Shortest Remaining Time First (SRTF) 

job scheduling algorithm is used to execute 

computational workload on the data center. There 

may be other job scheduling techniques that can 

have less workload execution time, but the 

selection of optimal job scheduling technique does 

not lie in the scope of this paper. Moreover, four 

different scenarios are considered for the cost of 

delaying data center jobs under SLA like (a) no 

cost of delaying jobs, (b) equal cost of delaying 

jobs, (c) Number of CPU utilization-based cost of 

delaying jobs, (d) execution time-based cost of 

delaying jobs. 
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No Cost of Delaying Jobs (NCDJ): When 

the data center delays its own workload jobs for 

fulfilling power system job requirements, the only 

benefit data center will get from the power system 

is the cost that it will lose from delaying own jobs. 

The data center’s own wor load jobs will not put 

any penalty to the data center for the delay. 

Equal Cost of Delaying Jobs (ECDJ): In this 

scenario, when data center’s own wor load jobs 

will be delayed, there will be equal penalty cost 

per minute for every job on the data center. In this 

case, the data center will lose some revenue than 

NCDJ. 

Number of CPU Utilization based Cost of 

Delaying Jobs (CCDJ): In this scenario, the 

delaying job cost penalty will vary from job to job. 

The delaying cost of each job will depend upon 

the number of CPU utilization. The jobs executing 

on a smaller number of CPUs will be selected first 

for the delay because the job penalty is less 

compared to the jobs utilizing more CPUs [17]. 

Execution Time based Cost of Delaying 

Jobs (ETDJ): In this scenario, the jobs that are 

started in the near past and have many hours of 

execution time left will be selected first for the 

delay. The jobs that will be finished in the next 

few minutes will be the least prior jobs to be 

delayed. The reason for this selection criteria is 

because if a job is delayed, which was executing 

from a long time will cost more in case of halt or 

restart [17]. 

4. Results Analysis 

The simulations of the proposed algorithm 

are performed on an SYS-7047GR-TRF system 

server that has 96 cores. The simulation results 

show that the proposed SLA-based EAS model is 

mutually beneficial for power systems and data 

centers. When EAS workload is added with the 

other cloud workload on the data center, the power 

consumption of cloud workload is used as a 

reference/ base calculation to compute the increase 

in power consumption. The average baseline 

power consumption per hour curve of the data 

center is plotted in Fig. 5 and the baseline power 

consumption cost of the data center is presented in 

Fig. 6. Due to EAS and delay in cloud workload, 

the excess power consumption adds an extra 

penalty ($) cost. Moreover, from Fig. 5, three 

different load periods are observed that are named 

as (a) peak-load period, (b) medium-load period, 

and (c) low-load period.  

 

Fig. 5: Data Center per hour average power 

consumption during a specific month 

 

Fig. 6: Data Center power consumption cost per 

day 

The peak-load period is witnessed from 

1:00 A.M. to 2:00 A.M. and 15:00 P.M. to 24:00 

A.M., medium-load period is also observed during 

two separated intervals of a day, such as 2:00 

A.M., 3:00 A.M., 13:00 P.M. and 14:00 P.M and 

low-load period is observed from 3:00 A.M. to 

13:00 P.M. The model is experimented for all 

three periods and evaluated the percentage 

increase in the cost of the data center by 

performing power system jobs on priority and 

delaying data center’s wor load jobs, if not 

enough servers are available for the EAS. 

On a given day in a data center, the total 

number of jobs during the peak-load hour (16:00 

P.M.) is 2112. The 101 jobs are running from 

more than 48 hours and will be completed in the 

next 8 hours on an average. The 1322 jobs are 

running from more than 24 hours and their 

expected completion time is within next 12 hours 

on an average, 401 jobs are running from the last 8 

hours and they are expected to complete in the 

next 4 hours on an average. Lastly, the 288 jobs 

are running from the last 8 hours and their 

expected completion time are 10 hours on average. 

Similarly, at a medium-load hour (14:00 P.M.) and 

low-load hour (10:00 A.M.), the total number of 

jobs executing are 1459 and 960 respectively. 

Moreover, at the peak-load hour, there are three 
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types of jobs with respect to the number of CPU 

utilization. There are 51 jobs, each one is utilizing 

more than 30 CPUs, 694 jobs are utilizing 2-10 

CPUs each, and 1367 jobs are utilizing 1 CPU 

each. A similar ratio of CPU utilization is 

observed during medium and low load hours. 

In-network setup, on-demand pricing 

criteria of Amazon is used to determine the cost ($) 

of the jobs, such as if a job utilizes 8 CPUs, it cost 

$0.840/hour [4]. Moreover, for CCDJ and ETDJ, 

the penalty for delaying jobs are based on the SLA 

defined in Section 3 [4]. Furthermore, for CCDJ, 

whenever two or more jobs utilize the same 

number of CPUs and one of the jobs required to be 

delayed, the first job in the list will be delayed. 

Similarly, in ETDJ, when two or more jobs are 

running for an equal amount of time and one must 

be delayed, the first job in the list will be delayed. 

The close observation of Fig. 4 illustrates that 

electricity price is also high during the peak-load 

period of the data center. Therefore, the data 

center workload-based power consumption cost 

also illustrates a similar pattern to the electricity 

price profile as shown in Fig. 6.  

4.1  Impact of SLA based EAS Model 
on Data Center 

The EAS job timing is varied from five 

minutes to one hour for testing and validation of 

the model. The power consumption pattern of the 

users is always variable over the period of the day 

and this phenomenon must be considered in the 

simulations. Particularly, when the model-based 

algorithm’s output bac  into the power system via 

a control mechanism. Therefore, the OPF model 

validity can be found in the 5 minutes’ time to 

approximately 1-hour time frame [18]. In data 

centers, the servers’ utilization for performing the 

EAS can also vary depending upon the 

requirements of parallel computing. Therefore, the 

model is evaluated under 100%, 50%, and 1% data 

center’s server utilization. Experimental results in 

Fig. 7, Fig. 8, and Fig. 9 represent the percentage 

increase in the data center cost ($) at peak-load, 

medium-load, and low-load periods, respectively. 

The three load periods are discussed under NCDJ, 

ECDJ, CCDJ and ETDJ scenarios. We calculate 

the cost ($) of the data center power consumption 

due to the power system’s job execution and 

delaying of the data center’s wor load jobs.  

The cost is compared with the base power 

consumption cost shown in Fig. 6. Moreover, the 

results presented in Fig. 7, Fig. 8, and Fig. 9 are 

used for the revenue calculation of the data center. 

In Fig. 7, the percentage increase in the cost of 

CCDJ and ETDJ has remained higher than the 

 CDJ and ECDJ in all three servers’ utilization 

scenarios. The reason for this phenomenon is the 

variable cost for each job delay in CCDJ and 

ETDJ. In Fig. 7 (a), the ETDJ approach cost more 

compared to CCDJ approach because the delay 

cost of the jobs that were running for more than 48 

hours are proved costlier than the jobs utilizing a 

higher number of CPUs.

Fig. 7: Impact on data center’s cost for executing EAS at pea -load hour. 

However, for the 50% server utilization at 

peak-load, the job delaying cost is similar for both 

CCDJ and ETDJ because neither the long running 

jobs were delayed nor the jobs utilizing a higher 

number of CPUs.The aforesaid description is 

depicted in Fig. 7 (b). Fig. 7 (c) presents the 

results of the power system jobs that only require 

1% of data center servers for the execution. The 

power system jobs that have the least execution 

time in ETDJ cost less compared to the jobs 

utilizing the least number of CPUs in CCDJ. In 

Fig. 8, during the medium-load period, delaying 

jobs using ETDJ cost less compared to CCDJ 

scheme. The effect is more prominent in the case  
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Fig. 8: Impact on data center’s cost for executing EAS at medium-load hour

Fig. 9: Impact on data center’s cost for executing EAS at low-load hour

.of 50% and  % servers’ utilization, when the 

ETDJ scheme proves to be less expensive in 

contrast to NCDJ, ECDJ, and CCDJ. The reason 

for the aforementioned effect is the jobs that were 

running from more than 24 hours were kept on 

running without any delay that results in overall 

less penalty. Therefore, the cost of the ETDJ 

scheme appeared to be more than NCDJ and ECDJ 

but less than CCDJ as shown in Fig. 9. 

4.2 Impact of EAS Model on Power 
System 

The cost function for the OPF optimization 

algorithm is to minimize the TLs power losses. 

The power loss is calculated with the real power 

discrepancy between sending and receiving bus of 

the TL. We arbitrary outage TLs for a random 

time. Whenever such outage occurs, the situation 

is known as an emergency and need to recalculate 

the OPF for power balancing. If the optimization 

algorithm does not converge, then the blackout/ 

system failure can occur. Further, if the algorithm 

converges but the TLLs exceed the threshold of 

9.607MW, the system is still considering as in 

failure state. Fig. 10 illustrates the convergence 

iterations of the OPF algorithm.  

 

Fig. 10: TLLs convergence using OPF algorithm 

when 7 TLs are outage 

The OPF converges in 5 to 7 iterations in 

most situations. The least TLLs achieved for 7 

TLs outage case is 3.0771MW, which is less than 

5% of the total generated power of the system and 

this power loss is acceptable in any real power 

system. Moreover, the TL centrality is calculated 

as shown in Fig. 11 (a). In IEEE 30-bus system, 

the TL centrality index indicates that TL 10 and 

TL 20 are more prone to failure because the TL 

index value exceeds the threshold limit as shown 

in Fig. 11(a). 
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Fig. 11: The status of the 30-bus system when N-k transmission lines are outage 

Fig. 12: The status of the 30-bus system after successful execution of the EAS on the data center

Moreover, Fig. 11 (b) shows the bus 

centralities, the buses with high centrality values 

are more vigilant to failure because these buses are 

linked with the TLs having high TL centralities 

and the electrical load attached on the buses is also 

high compared to the other buses. Fig. 11 (b) 

illustrates that Bus 1, Bus 2, Bus 4, and Bus 12 are 

the most central buses in the 30-bus test system. 

Therefore, an optimized OPF solution is required 

from the data center to balance the power flow on 

endangering TLs. Once the overloading of TLs is 

balanced, the centrality index of critical buses will 

also reduce. Fig. 12 (a) shows the optimized TL 

centrality on TLs after the execution of EAS on 

the data center. In Fig. 12 (a), it is observed that 

the TL centrality of TL 10 and TL 20 has reduced 

into normal operating range. Moreover, Fig. 12 (b) 

shows the bus centralities after the execution of 

EAS. The comparison of Fig. 11(b) and Fig. 12 (b) 

illustrates the observable reduction in the bus 

centralities. Therefore, it is concluded that the 

computational capability of the data center can 

effectively be utilized for the steady-state 

operation of the power system. The proposed SLA 

works perfectly if there is no delay in the EAS, 

however, the delay in EAS will cause revenue loss 

for the data center.  

Fig. 13 illustrates the revenue curve and 

incentive margin for the data center under the 

influence of EAS failure. Fig. 13 is the resultant 

graph of Eq. (10). In Fig. 13, the 100% revenue 

means, the given incentives   becomes the profit 

of the data center. The 0% revenue indicates that 

the revenue loss and incentives   of a data center 

due to the delay of own cloud jobs equalize each 

other and earning no extra profit. Moreover, the 

graph below 0% shows that the data center is not 

only losing power consumption cost but also 

losing own revenue that is earned from another 

workload.  

 

Fig. 13: Relationship of job failure with data 

center revenue under SLA 

(a) Number of TL fails lead to the system 

failure 

(b)  Bus Centrality 

                                    (a) TL Centrality                                                           (b)  Bus Centrality 
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Fig. 13 also shows that the bearable 

minimum failure rate (𝓆) of a single EAS job is 

0.48 over the period of a day. If the failure rate is 

more than 0.48, then the data center will lose 

revenue. 

5. Conclusions and Future Work 

An Emergency Auxiliary Services (EAS) 

model is proposed in the paper for power systems 

and data centers. The idea is to use the 

computational capability of the data center to 

ensure stability of the power system in steady-state 

rather than using the dedicated servers for the 

power system operations. The proposed EAS 

model results also illustrate the data center’s 

revenue maximization. The EAS includes a useful 

tool for the power system as the converged OPF 

solution ensure reduction in transmission line 

losses and indicate health of transmission lines and 

buses by using centrality concepts. Finally, using 

experiments on the real-world workload of the 

data center and IEEE standard bus system, it was 

concluded that the EAS optimized solution in 

certain conditions is convex. Because the wide-

area power system is very large and required 

intensive computation for maintaining system 

reliability. The proposed EAS model will be 

extended to multiple data centers attached to the 

power system and selection of data center to fasten 

the response time of EAS.  
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