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Abstract 
The computations for compound channel section are difficult in most of the case when the 

channels are connected with each other in different forms such as tree type of looped network. The 
computation at the bifurcation points are difficult in the sense that change in discharge has to satisfy 
the continuity and momentum equations. In the iteration procedure the computations some time 
become unstable due to magnification of the error. . An algorithm is presented to compute the water 
surface profiles in steady, gradually varied flow of open channel having compound cross section. The 
methodology is more general and suitable for application to compound and trapezoidal channel cross 
sections. The algorithm is capable of calculation of water surface profiles in all types of channel 
network i.e., series channel, tree type network and looped network. In this method the energy and 
continuity equation are solved for steady, gradually varied flow computations. The Newton Raphson 
method has been used for the solution of resulting non linear equations. The results have verified with 
the physical model for channel network. The observed and computed results are in good agreement. 

Key Words:  Gradually varied flow; compound channel networks; Steady flow; Newton Raphson 
method; Flood plain 

 

1. Introduction 
The flow in channel network is usually steady 

gradually varied flow most of the time. The canal 
sections are designed on different approaches such as 
regime theory, tractive force method and combination 
of both. The computations of gradually varied flow in 
a channel network help to access the efficiency of the 
canal network and irrigated area under different flow 
conditions.. A number of numerical techniques are 
available for computation of gradually varied flow 
(Chow 1959, Chaudhry 2008). The standard step 
method based on single step calculation is well suited 
for single and series channels. The gradually varied 
flow computation is also required for the channel 
network or system of the channel interconnected. 
Such a system exists in Indus Basin Irrigation system, 
where the rivers are connected with each other 
through link canals. The irrigation canals are feed by 
different source of water at different locations i.e a 
canal may be supplemented by another canal to 
irrigate more agriculture area for crop production. 

The open channel network also occur braided 
river channel, (In braided river the channel is divided 
into small channels and these channels are connected 
with each other forming the channel network) divided 
shipping channels and interconnected storm water 
system. Although most of the research work has been 
carried out for unsteady flow in channel networks 
(Choi and Molinas 1993; Kutija 1995), Wylie (1972) 
developed an algorithm to compute flow around a 
group of islands in which total length of channel 
between two nodes is treated as single reach to 
calculate the loss of energy and node energy is used 
as variable. Reddy and Bhallamudi (2004) presented 
an algorithm for computation of gradually varied 
flow in cyclic looped channel networks. 

Wylie (1972) developed an algorithm to 
compute the flow around a group of islands, in which 
the total length of the channel between two nodes is 
treated as a single reach to calculate the loss of 
energy and the node energy is used as a variable. In 
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this method, the channel is not divided into several 
reaches as in a finite difference method. A reach is 
defined as the portion of the channel between two 
finite-difference nodes. Chaudhry and Schulte (1986) 
presented a finite difference method for analyzing 
steady flow in a parallel channel system. Their 
formulation is in terms of the more commonly used 
variables, flow depths and discharges. Schulte and 
Chaudhry (1987) later extended their method for 
application to general looped channel networks. In 
their method, a channel  in the system is divided 
into several reaches, iN . The continuity and the 
energy equations can be written in terms of flow 
depths, and flow rates for all the reaches, resulting in 

a total of ∑
=

=

Mi

i
iN

1
)(2  equations because there are   

1+iN  nodes in any channel  and there are M 
channels in the system (a channel reach has two 
nodes one at start of the reach and second at the end 
of the reach). Additional 2M equations, required for 
closing the system, are obtained from the boundary 
conditions and the compatibility conditions at the 
junctions. The system of nonlinear simultaneous 
equations resulting from the above formulation is 
solved using the Newton–Raphson iteration 
technique. This requires inversion of the system 
Jacobian for every iteration step. In this formulation, 
the size of the Jacobian increases if the number of 
reaches in each channel is increased to increase 
accuracy. 

Sen and Garg (2002) developed an efficient 
solution technique for one dimensional steady and 
unsteady flow in general channel network system 
having trapezoidal and cross section. 

Problem definition 
In the previous studies for channel network, 

Schulte and Chaudhry (1987), Reddy and Bhallamudi 
(2004), Naidu et al. (1997) the trapezoidal channel 
cross-section was considered. However due 
difference in hydraulic and geometric characteristics 
between main channel and floodplains the 
computations become complex. In this study 
equations were derived for compound channels in 
tree type network or looped network. The developed 
model was also extended to a channel network 

having more than one source of discharge inflow to 
the channel network. It can work for dendritic, 
looped, divergent, or any combination of such 
networks. 

Methodology 
The governing equations for water profile 

calculations include energy equations at different 
location is given as 
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where 1 2,z z  are elevations of the main channel invert 
levels; 1 2,y y  are depth of water at cross sections; 

1 2,∝ ∝  are velocity weighting coefficients; 
1tQ , 

2tQ  

are total discharge at sections 1 and 2; 
1tA  and 

2tA  

are total flow areas at sections 1 and 2; eh  is energy 
head loss between two sections. Detailed description 
of derivation of energy equation is given in Chaudhry 
(2008). 

The energy head loss between two cross 
sections is comprised of friction losses and expansion 
or contraction losses. Expansion and contraction 
losses are neglected the equation for energy loss is as 
follows: 

Fe Sxh ∆=  (2)  

Average friction slope between two cross 
sections may be written as 

2
21 FF

F
SS

S
+

=  (3) 

where x∆  = reach length; =FS  average 
friction slope between two sections, 

1FS and 
2FS are 

friction slopes at sections 1 and 2. 
The discharge formula can be written as 

following 

FQ K S=  (4)  

The conveyance is calculated within a sub 
element from the following equation: 

3
21 AR

n
K =  (5)  

Total flow area (m2), total discharge and total 
conveyance of the compound channel (Fig. 1) can be 
written as: 
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2t f mQ Q Q= +  (6)  

2t f mA A A= +  (7)  

2t f mK K K= +  (8)  

Where Qt,  Qf  and Qm  are total discharge, floodplain 
discharge, and discharge in main channel 
respectively. Similarly, ,t fA A  and mA  are total 
flow area of the compound channel, left or right flood 
plain flow area and flow area of main channel. 

The velocity coefficient ∝  is computed based 
on the conveyance in the three flow sub elements 
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Where K = conveyance for sub element; n = 
mannings roughness coefficients for subelement; A = 
flow area for subelement; R = hydraulic radius for 
subelement. Subscripts f and m refer to the flood 
plain area and main channel section, other parameters 
are explained above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For simplicity Equation (1) may be expressed as 
following. 
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where             2
tA

a ∝=  

Areas, wetted perimeters and hydraulic radiuses 
of the sub elements of the compound channel can be 
formulated as following. The floodplain flow area 
either left or right is computed as 

)(
)(
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zys
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+=  (11)  

Flow area in main channel 

2 2m m m mA s Z s yZ B y=− + +  (12)  

Wetted perimeter for the flood plain either left 
or right side of the main channel. 
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Fig 1     Schematic of compound cross section
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)(12 ZysBP fff −++=  (13)  

Wetted perimeter for main channel 

22 1m mm B Z s
P

= + +
 (14) 

Hydraulic radius of floodplain area either left or 
right side of main channel 

f

f
f P

A
R =  (15) 

Hydraulic radius of main channel 

m

m
m P

AR =  (16) 

Continuity equation between two sections can 
be written as 

1 2 0t tQ Q− =  (17) 

Solution Algorithm 
Consider a system having M channels, where 

each channel may have different cross section, 
Manning’s n, bottom slope, etc. Each channel is 
subdivided into Ni reaches (where i refer to the 
channel number), with the first section numbered as 1 
and last section numbered as Ni+1. Flow rate  and 
depth  are two unknown variables at each section. 
The total number of unknowns in the entire channel 

network are equal to ∑
=

=

+
Mi

i
iN

1
)1(2 . 

To solve the problem each section will have two 
equations continuity and energy equation, if a 
channel have 1N  reaches number equation will be 
2 1N , the remaining two equations will be provided 
as boundary conditions. In present study for a single 
channel the upstream boundary condition is known 
discharge and downstream boundary condition is 
known water depth. As for the channel network, the 
continuity, energy, junction and boundary equations 
comprises of the system of equations to solve 
unknown variables in the entire channel network. The 
continuity and energy equations are written for each 
of the Ni reaches of a channel i as. 
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,2 ,3,4 0i ii t tF Q Q− ==  (18d) 

 
)

1,, 1 iii FNF SS ++  (18e) 

0
1,,2, =−=
+iNiiNi ttti QQNF  (18f) 

In , i is channel number, 1 is equation 
number for the first reach. Similarly a set of 
equations was formulated for all the channels of the 

network, thus totaling ∑
=

=

Mi

1i
iN2   equations. 

Remaining 2M equations are supplemented by the 
boundary conditions and junction equations. 
Boundary conditions and junction equations 
presented by Shulte and Chaudhry (1987) are given 
below. 

Junction equations 
The available equations at any channel junction 

are equal to the number of channels joining at that 
junction. Either two upstream channels joining with a 
downstream channel or one upstream channel joining 
with two downstream channels gives three equations. 
In which two equations are energy equations and one 
equation is continuity equation. The energy losses 
and the differences in the velocity heads have been 
neglected at the junction. The continuity equation and 
the two energy equations at junction (J1) of one 
upstream channel and two downstream channels 
shown in Fig 2a may be written as: Continuity 
equation for the junction: 
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1,1 , ,1 1,1 2,1 0t N t N ti i i i ij Q Q QF
+ + += − − =  (19) 

First energy equation for the junction 

1,2 , 1,11 0i N iij y yF
++= − =  (20) 

Second energy equation for the junction 

1,3 , 2,11 0i N iij y yF
++= − =  (21) 

At the junction (J2) of two upstream channels 
and one downstream channel shown Fig.2b the 
following three equations are available. 

Continuity equation for the junction 

2,1 , ,1 1 1 2,11
0t N t N ti i i ii

j Q Q QF
+ + + ++

= + − =  (22) 

First energy equation for the junction 

2,2 1 1, 1 1 0j i i iF y y N+ + += − + =  (23) 

Second energy equation for the junction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2,3 , 2,11 0i N iij y yF
++= − =  (24)  

Similarly at the junction (J3) of two series 
channels where different sections join as shown Fig. 
2c, the following two equations are available. 

3,1 , 1 1,1 0t N ti i ij Q QF
+ += − =  (25) 

3,2 , 1,11 0i N iij y yF
++= − =  (26) 

Boundary Conditions 
The flow was assumed as subcritical in all 

channel networks, for subcritical flow, the end 
conditions consist of a specified flow depth  at all 
the pendant nodes and a specified discharge  at 
the inflow nodes of the network as shown in Fig 3. 

For one upstream channel and two downstream 
channels (Fig 3a) the upstream and downstream 
boundary conditions may be written as: 

Upstream boundary condition 

 

i, Ni+1 

i+1,

i+2, 1 

i,Ni+1 

i+1,Ni+1+
1

i+2,1

i, i+2,1

 
Fig.2 Channel junctions (a) two d/s channels and one u/s channel (b) two u/s channels and one d/s channel (c) 

two channels in series 

(a) 

(c) 

(b) 
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12
3 2, 2, 0

i
BC i dbc i NF y y

++
+ + == −  (27) 

First downstream boundary condition 

11
2 1, 1, 0

i
BC i dbc i NF y y

++
+ + == −  (28) 

Second downstream boundary condition 

12
3 2, 2, 0

i
BC i dbc i NF y y

++
+ + == −  (29) 

For a junction with two upstream channels and 
one downstream channel the upstream and 
downstream boundary conditions may be written as 

Upstream boundary condition 

,1 0
i ubc iBC t tF Q Q= − =  |(30) 

1, 1,12 0
i ubc iBC t tF Q Q
+ +

= − =  (31) 

Downstream boundary condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

12
3 2, 2, 0

i
BC i dbc i NF y y

++
+ + == −  (32) 

As described above the energy equation, 
continuity equation, junction compatibility condition 
and boundary conditions are solved using Newton 
Raphson method. For this method partial derivatives 
of flow variables are required for all the equations. 
The derivatives are formed as a Jacobian matrix for 
iterative solution. The following derivatives for 
different equations may be obtained as following.  

Partial derivatives of energy equation 
For each energy equation, there are four nonzero 

partial derivatives, namely the partial derivatives with 
respect to flow depth and with respect to the 
discharge at the section under consideration as well 
as partial derivatives with respect to the 
corresponding variables for the adjacent section. 
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11, 1ii Ny
++ +
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22, 1ii Ny
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Specified 
2,i dbcy +  

(a) One entry channel and two pendant channels 
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Specified 

,i ubctQ  

,1itQ  

1 ,1itQ
+

 

Specified 
2,i dbcy +  

22, 1ii Ny
++ +  

 
(b) Two entry channels and one pendant channel 

Fig 3    Specification of boundary conditions  
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Thus for an energy equation, Fi,k, between section j 
and j+1 of channel i, the following non zero partial 
derivatives are obtained. 
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Following are the partial derivates of the terms  
a and SF with respect to y in equations (33) to (36) by 
using the chain rule. 
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Individual terms in the equations (39) and (40) 
are presented below 
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Numerical experimentation revealed that 
23/222 mfmfm nnRRA  can be neglected without 

compromising the accuracy of the computations. 
However the terms 2222 3,4 mffmff nRAnRA , can be 

neglected provided 5Af < Am and 4Rf < Rm. 

Partial derivatives of continuity 
equation 

Here the subscript  refers to the equation 
number and its values is not identical to that of . 
Likewise continuity equation , the only non 
zero partial derivatives are those with respect to the 
discharges of the adjacent sections, i.e., 
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Partial derivatives of junction 
equations 

The Partial derivatives at junction of two 
upstream channels and one downstream channel are 
given as following. 
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Similarly partial derivatives at junction of one 
upstream channel and two downstream channel and 
junction of series channels can be written. 

Partial derivatives of boundary 
conditions 

The partial derivatives of boundary conditions 
for one upstream channel and two downstream 
channels may be written as 
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Similarly partial derivatives may be written for 
single inlet and single outlet channel or any other 
combination of boundary conditions. 

Solution procedure  
Matrix of system of equations is formed by 

grouping of continuity and energy equations in 
reaches, junction equations and boundary conditions. 
Solution procedure starts with arbitrary initial 

estimates of )0(
, jiy  and )0(

, jitQ  at each and every 

section of the network. Reasonable initial values may 
be assigned by setting them equal to boundary 
conditions or by using the experience. Newton 
Raphson method is an iterative procedure and 
corrections in the flow rates and depths are obtained 
between iterations. Improved values of the flow 
variables at subsequent intervals are obtained by 
adding corrections to previous values by applying a 
relaxation factor 
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where r is a relaxation factor; Numerical 
experimentation revealed that r = 0.5 converges well 
for the complex networks and for simple networks r 
= 1 gives the faster convergence. 

Generalized application  
This method is a general method which is 

applicable to compound channel networks, 
trapezoidal channel networks and as well as mixed 
channel networks (some channels are compound and 
remaining channels are trapezoidal). If the water 
level goes below the flood plain level for any channel 
i.e Zy ≤  then assign Z=y and variables Af. Bf. Rf. Pf 

and their derivatives 

dy
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,,,,  and 
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dS  of that 

channel are equal to zero. 
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Model Application   
The developed model was applied to two 

different types of channel networks. First of all series 
of channels with compound channel cross section 
was modeled, and then the model was applied to the 
looped channel network. Secondly looped channel 
network was modeled. The detailed description of the 
model input channel characteristics, boundary 
conditions and model output for both channel 
networks are described in the next section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tree type channel network 
Tree type channel network as shown in Fig 4 

was modeled. The channel number and node number 
are shown in Fig 4. There are 15 channels and 16 
nodes. The main channel and flood plain have side 
slopes 2H: 1V, bed slope is different for each 
channel. The flow in the entire channels is subcritical 
and the end condition at downstream node are  = 
4.0 m in all the channels. The upstream discharge is 
Qu = 80 m3/sec. The remaining channel  
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Fig 4   Tree channel network 
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characteristics are given in Table 1. The bottom slope 
of the channels is 0.0001. 

In table 1, i is channel number, D/S is 
downstream, Bf is flood plain width, Sf is side slope 
of bank of flood plain, Sm is side slope of main 
channel, nf is roughness of the flood plain, nm is 
roughness of main channel,  Ni is number of  reaches, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qo is initial discharge, is initial depth. 

The iterative procedure was started by assuming 
the flow depth equal to 4.0 m. A tolerance of 0.0001 
for yi,j and Qi,j were specified for convergence of 
solution procedure. The solution was converged after 
10 iterations. The computed discharges and water 
depth at different cross section are shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Channel characteristics of the tree type compound channel network. 

i 
U/S 
node 

D/S 
Node Bf(m) Z(m) sf Bm sm L(m) nf nm Ni 

1 1 2 9 2.5 2 20 2 10000 0.025 0.02 5 
2 2 3 8 2.5 2 10 2 8000 0.025 0.02 5 
3 2 4 8 2.5 2 10 2 8000 0.025 0.02 5 
4 3 5 7 2.5 2 8 2 5000 0.025 0.02 5 
5 3 6 7 2.5 2 8 2 5000 0.025 0.02 5 
6 4 7 7 2.5 2 8 2 5000 0.025 0.02 5 
7 4 8 7 2.5 2 8 2 5000 0.025 0.02 5 
8 5 9 4 2.5 2 5 2 4000 0.025 0.02 5 
9 5 10 4 2.5 2 5 2 4000 0.025 0.02 5 
10 6 11 4 2.5 2 5 2 4000 0.025 0.02 5 
11 6 12 4 2.5 2 5 2 4000 0.025 0.02 5 
12 7 13 4 2.5 2 5 2 4000 0.025 0.02 5 
13 7 14 4 2.5 2 5 2 4000 0.025 0.02 5 
14 8 15 4 2.5 2 5 2 4000 0.025 0.02 5 
15 8 16 4 2.5 2 5 2 4000 0.025 0.02 5 

 

 
Table 2   Computed water depth and discharge at different locations in tree channel network 
 

 Section Distance(m) Depth (m)  Section Distance(m)   Section Distance(m) Depth (m)
Channel 1 1 0 3.096 Channel 6 1 0 3.194 Channel 11 1 0 3.616 
Q=80.0 m3/sec 2 2500 3.085 Q=20.0 m3/sec 2 1250 3.295 Q=10.0 m3/sec 2 1000 3.711 
 3 5000 3.068  3 2500 3.399  3 2000 3.807 
 4 7500 3.042  4 3750 3.506  4 3000 3.903 
 5 10000 3.003  5 5000 3.616  5 4000 4.000 
Channel 2 1 0 3.003 Channel 7 1 0 3.194 Channel 12 1 0 3.616 
Q=40.0 m3/sec 2 2000 3.034 Q=20.0 m3/sec 2 1250 3.295 Q=10.0 m3/sec 2 1000 3.711 
 3 4000 3.075  3 2500 3.399  3 2000 3.807 
 4 6000 3.128  4 3750 3.506  4 3000 3.903 
 5 8000 3.194  5 5000 3.616  5 4000 4.000 
Channel 3 1 0 3.003 Channel 8 1 0 3.616 Channel 13 1 0 3.616 
Q=40.0 m3/sec 2 2000 3.034 Q=10.0 m3/sec 2 1000 3.711 Q=10.0 m3/sec 2 1000 3.711 
 3 4000 3.075  3 2000 3.807  3 2000 3.807 
 4 6000 3.128  4 3000 3.903  4 3000 3.903 
 5 8000 3.194  5 4000 4.000  5 4000 4.000 
Channel 4 1 0 3.194 Chennel9 1 0 3.616 Channel 14 1 0 3.616 
Q=20.0 m3/sec 2 1250 3.295 Q=10.0 m3/sec 2 1000 3.711 Q=10.0 m3/sec 2 1000 3.711 
 3 2500 3.399  3 2000 3.807  3 2000 3.807 
 4 3750 3.506  4 3000 3.903  4 3000 3.903 
 5 5000 3.616  5 4000 4.000  5 4000 4.000 
Channel 5 1 0 3.194 Chennel10 1 0 3.616 Channel 15 1 0 3.616 
Q=20.0 m3/sec 2 1250 3.295 Q=10.0 m3/sec 2 1000 3.711 Q=10.0 m3/sec 2 1000 3.711 
 3 2500 3.399  3 2000 3.807  3 2000 3.807 
 4 3750 3.506  4 3000 3.903  4 3000 3.903 
 5 5000 3.616  5 4000 4.000  5 4000 4.000 
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Looped channel network  
In the second case loop channel network was 

simulated as shown in Fig. 5. There are 10 channels 
and eight nodes in looped network. Similar to the tree 
type channel network, in looped network main 
channel and floodplain have side slopes 2H:1V, bed 
slope is different for each channel. The flow in all the 
channels is subcritical and the end condition at 
downstream node are  = 6.0 m and Qu = 75.0 
m3/sec. The remaining channel characters are given 
in Table 3. The bottom slope of the channels is 
0.0001. The bottom slope is taken constant for all the 
channels for simplicity but it can vary. 

The iterative procedure was started by assuming 
the flow depth equal to 6.0 m. A tolerance of 0.0001 
for  yi,j  and Qi,j  were  specified  for  convergence  of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution procedure. The solution was converged after 
10 iterations. The computed discharges and water 
depth at different cross section are shown in Table 4. 

Comparisons with Physical Model  
The simulation was also done with the physical 

model developed at hydraulic lab of Centre of 
Excellence in Water Resources Engineering. Due to 
space and discharge limitation the model the 
maximum discharge was 8.3 liter/sec. The maximum 
channel length was 5 meter. The channels were made 
of acrylic sheet. The roughness value selected in 
model was 0.01. The observed and computed depths 
are compared in Table 5. The difference between 
observed and computed depth varies from 2 to 5.54 
% which are acceptable. 
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Fig 5 Looped channel network 

 

Table 3    Channel characteristics of looped channel network. 

i U/S node D/S Node Bf(m) Z(m) sf Bm sm L(m) nf nm Ni 
1 1 2 10 5 2 20 2 10000 0.025 0.02 20 
2 2 3 6 5 2 8 2 5000 0.025 0.02 20 
3 2 4 6 5 2 7 2 5000 0.025 0.02 20 
4 3 5 5 5 1 5 2 5000 0.025 0.02 20 
5 4 5 5 5 1 6 2 5000 0.025 0.02 20 
6 4 6 6 5 1 6 2 10000 0.025 0.02 20 
7 5 6 6 5 1 6.5 2 5000 0.025 0.02 20 
8 3 7 7 5 2 7 2 15000 0.025 0.02 20 
9 6 7 7 5 2 9 2 5000 0.025 0.02 20 
10 7 8 10 5 2 15 2 10000 0.025 0.02 20 
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Table 5 Comparison between observed and 
computed depth in channel network 

  Section 
Distance 

(m) 
Depth 
Obs. 

Depth  
 (m) 

Diff 
(%) 

1 0 0.28 0.270 3.5 
2 0.5 0.2799 0.270 3.4 
3 1.5 0.278 0.267 4.1 
4 2 0.277 0.268 3.2 

Main  
Channel 
Q=8.3 L/sec) 
   5 2.5 0.2776 0.272 2 

1 0 0.2 0.195 2.5 
2 0.5 0.19 0.180 5.01 
3 1.5 1.18 1.133 4.01 
4 2 0.18 0.174 3.5 

Branch1 
Q=4.0 L/sec) 
   5 2.5 0.179 0.175 2.24 

1 0 0.2 0.196 2.21 
2 0.5 0.19 0.183 3.5 
3 1.5 1.19 1.148 3.54 
4 2 0.18 0.171 5 

Branch2 
Q=4.0  L/sec) 
   5 2.5 0.179 0.172 3.8 

1 0 0.17 0.161 5.01 
2 0.5 0.169 0.162 3.9 
3 1.5 0.17 0.162 4.6 
4 2 0.16 0.153 4.2 

Distributry-1 
Q=2.0 L/sec 
   5 2.5 0.15 0.145 3.5 

1 0 0.17 0.165 2.8 
2 0.5 0.16 0.152 4.85 
3 1.5 0.17 0.161 5.02 
4 2 0.159 0.152 4.7 

Distributry-2 
Q=2.0 L/sec 
   5 2.5 0.15 0.145 3.5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 
The algorithm for gradually varied flow 

computation was based on the solving the continuity 
and momentum equation by Newton-Raphson 
method.  This proposed methodology is equally good 
for modeling the trapezoidal and compound channel 
networks. The equations and the solution algorithm 
are presented in detail to facilitate application of the 
method by the practicing hydraulic engineer. Finally 
the methodology is demonstrated on a tree type and 
looped compound open channel networks. The model 
can be easily applied to the draw the water surface 
profiles in irrigation network in which there is a main 
canal, branch canal, distributary and minors. The 
model developed in this study can be applied to any 
number of channels. The number of reaches and 
nodes can also be extended to any desired number. 

Notations 
z = elevation of channel bottom above datum 
y = flow depth 
∝ = velocity weighting coefficients 
 

Table 4  Computed water depth and discharge at different locations in looped channel network 
 Section Distance (m) Depth (m)  Section Distance (m) Depth (m) 
Channel 1 1 0 3.159 Channel 6 1 0 3.754 
Q=75.00 m3/sec 2 2000 3.200 Q=20.45 m3/sec 2 2000 3.939 
 3 4000 3.251  3 4000 4.109 
 4 6000 3.314  4 6000 4.293 
 5 8000 3.389  5 8000 4.480 
 6 10000 3.477  6 10000 4.669 
Channel 2  1 0 3.477 Channel 7 1 0 4.222 
Q=39.14 m3/sec 2 1000 3.524 Q=27.79 m3/sec 2 1000 4.310 
 3 2000 3.574  3 2000 4.398 
 4 3000 3.628  4 3000 4.487 
 5 4000 3.685  5 4000 4.587 
 6 5000 3.746  6 5000 4.669 
Channel 3 1 0 3.477 Channel 8 1 0 3.746 
Q=35.86 m3/sec 2 1000 3.525 Q=26.75 m3/sec 2 3000 3.997 
 3 2000 3.577  3 6000 4.260 
 4 3000 3.632  4 9000 4.534 
 5 4000 3.691  5 12000 4.814 
 6 5000 3.753  6 15000 5.099 
Channel 4 1 0 3.746 Channel 9 1 0 4.669 
Q=12.39 m3/sec 2 1000 3.840 Q=48.24 m3/sec 2 1000 4.753 
 3 2000 3.935  3 2000 4.838 
 4 3000 4.030  4 3000 4.924 
 5 4000 4.126  5 4000 5.011 
 6 5000 4.222  6 5000 5.099 
Channel 5 1 0 3.754 Channel 10 1 0 5.099 
Q=15.40 m3/sec 2 1000 3.846 Q=75.00 m3/sec 2 2000 5.273 
 3 2000 3.939  3 4000 5.451 
 4 3000 4.033  4 6000 5.632 
 5 4000 4.127  5 8000 5.815 

 6 5000 4.222  6 10000 6.000 

 



Gradually Varied Flow Computation in Series, Tree Type and Looped Compound Channel Networks 

 59

Qt = total discharge at section 
g = acceleration due to gravity 
At =  total flow area 
he = energy headloss 

∆x = reach length 

FS  = average friction slope 

Qf = discharge in the left flood plain and also 
equal to discharge in the right flood bank 

Qm  = discharge in the main channel 
Af = flow area of the left flood bank also equal to 

flow area of right flood bank 
Am  = flow area of the main channel 
K = Conveyance of the flow in the subelement 
SF = friction slope of the flow in the subelement 
Q = discharge in subelement 

Kf = conveyance of the left flood bank and also 
equal to discharge in the right flood bank 

 = conveyance of the main channel 
A = flow area of the subelement 
R = Hydraulic radius of the subelement  
n = mannings roughness coefficient 
a = velocity weighting coefficients divided by 

square of the flow area 
Bf = bottom width of the left flood bank and also 

equal to right flood bank 
Bm = bottom width of the main channel 
Z = invert level of flood plain from the channel 

bottom 
s = side slope 
P = perimeter 

k = relaxation factor 
Subscripts 1 and 2 denotes the section 1 and 2 

respectively. 

Subscripts f and m denote the flood area and 
main channel section respectively 

Subscript i  denotes the channel number, j 
denotes the section number and k denotes the 
equation number. 

Subscript BC refers to boundary condition and 
subscript J refers to junctions. 
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