
Pak. J. Engg. & Appl. Sci. Vol. 11, July, 2012 (p. 1-13)

1

Toggling and Circular Partial Distortion Elimination Algorithms to
Speedup Speaker Identification based on Vector Quantization

Muhammad Afzal1, Mohammad A. Maud1, and Ali Hammad Akbar1
shmafzal@yahoo.com mamaud@uet.edu.pk ahakbar@gmail.com

1. Department of Computer Science and Engineering, University of Engineering and Technology, Lahore,
Pakistan.

Abstract
Vector quantization (VQ) efficiently competes with contemporary speaker identification

techniques. However, VQ-based real-time speaker identification systems suffer latency due to
distance computation between a large number of feature vectors and code vectors of speakers’
codebooks to find the best match in the database. The identification time depends on dimension
and count of extracted feature vectors as well as the number of codebooks. Previous speedup
techniques in VQ-based speaker identification decrease test vector count through pre-
quantization and prune out unlikely speakers. However reported speedup factors come with
accuracy degradation. This paper proposes techniques to speedup closest code vector search
(CCS) based on stationarity of speech. In this paper proximity relationship is substantiated
among code vectors extracted through LBG process of codebook generation. Based upon the
high correlation of proximate code vectors, circular partial distortion elimination (CPDE) and
toggling-CPDE algorithms have been proposed in this paper to speedup CCS. Further speedup
is proposed through pruning test feature vector sequence for unlikely codebooks during best
match speaker search. Our empirical results show that an average speedup factor up to 5.8 for
630 registered speakers of TIMIT 8kHz corpus and 6.6 for 230 speakers of NIST-1999 database
have been achieved through integrating the proposed techniques.

Key Words: Speaker identification; distortion computation; partial distortion elimination;
vector quantization; speech stationarity utilization; closest code vector search

1. Introduction

Automated speaker identification (ASI) is
defined as identifying a person based on her or his
speech against speaker models [1]. These speaker
models are prepared from a sequence of feature
vectors extracted through processing available
speech samples of persons at registration time. A
similarity measure is then calculated while
comparing the sequence of feature vectors X
extracted from a test speech sample with models
of registered speakers. An ASI system finds the
best matching model amongst the registered or
known speakers [2].

Most multi-user speech processing systems
employ ASI front end to adapt to the current user
to deliver better user specific services. Glaser and
Bimbot [3] used speaker identification for
verification tasks in real-world telecom

applications. A fast real-time ASI system trained
for wanted persons can be used to track their
appearance on digital telephone networks. Real
time speaker identification requirement has
increased emphasis on speeding up feature
matching techniques. Since Vector quantization
(VQ) often outperforms GMM [2] in ASI in terms
of accuracy and speed, this paper focuses on VQ.

Mel-frequency cepstrum coefficients
(MFCC) are commonly used in ASI systems [4].
VQ based speaker model training maps the
sequence of feature vectors,

{ 1 , }d
i iX x i T x= ≤ ≤ ∈ , extracted from

available speech samples of a speaker, to a set of
M centroids or code vectors called codebook,

{ 1 , }d
m mC c m M c= ≤ ≤ ∈ through

identifying M clusters of similar vectors in X
such that .M T<< Linde Buzo Gray (LBG)

Pak. J. Engg. & Appl. Sci. Vol.11, July, 2012

 2

clustering algorithm is mostly used [5] to compute
VQ codebooks that are stored in a database of
registered speakers.

Consider a sequence of feature
vectors { 1 , }d

i iX x i T x= ≤ ≤ ∈ , extracted from

test speech samples of a person. During pattern
matching an ASI system computes quantization
distortion of X with codebook C of each
registered speaker according to Equation (1),
wherein the test speaker is identified as the
registered speaker whose codebook has minimum
distortion [1].

1
(,) (,)

T

i
i

D X C e x C
=

=∑ (1)

Where
1

(,) min
m

i i mc C m M
e x C x c

∈ ≤ ≤
= − defines

distortion of a test vector, ,ix with a codebook,
,C based on Euclidean distance (EUD). The

computation of (,)ie x C is regarded as closest
code vector search (CCS). According to Equation
(1) the time order complexity of computing
minimum total distortion of X with M sized
codebooks of N registered speakers is given as

()O d M NT [4]. It specifically requires
2 d M N T× × × × floating point additions and
d M N T× × × floating point multiplications to
complete N T× number of CCSs. The research-
based efforts on speeding up ASI systems attempt
to expedite CCS computation on application
specific aspects of VQ-based systems.

Kinnunen et al., [4] used vantage point tree
(VPT) indexing to speedup CCS. They also
combined VPT with pre-quantization of X and
heuristic pruning of unlikely speakers to speedup
up ASI. However, their reported speedup factors
come with accuracy loss. How much pre-
quantization and speaker pruning can be done
without accuracy degradation is an unsolved
question. Accuracy degradation, shown in [4] due
to feature distortion by pre-quantization and
fallibility of heuristics, underpin the need of faster
but accurate techniques. This paper focuses on
speeding up ASI while avoiding accuracy
degradation. The CCS that plays crucial role in

ASI speed performance has been improved in the
light of a novel insight into LBG codebook
generation process. Contrary to Paliwal and
Ramasubramanian [9], circular partial distortion
elimination (CPDE) and its faster variant TCPDE
algorithms proposed in this paper have been
deduced from our substantiation of proximity in
code vectors of LBG-generated codebook as such.
The performance of proposed algorithms has been
analyzed both in terms of execution time and
number of MACs (multiplications, additions, and
comparisons) saved with respect to baseline
systems. The rest of the paper is organized as
follows: Section 2 discusses previous work on
speeding up CCS and ASI. Section 3 describes the
proposed speedup framework consisting of
CPDE, TCPDE and VSP algorithms. The
experimental parameters are described in section
4 along with discussions on results of proposed
techniques. Conclusions are drawn in section 5.
More detail about speech data selection and
feature vector extraction is included in an
appendix.

2. Related Work
The experimental study of Kinnunen et al.,

[4] is one of the comprehensive works which is
frequently referenced for speaker identification
speedup. The VPT indexing employed in [4] to
speedup CCS in their ASI systems resulted in
24% speedup for codebook of size 256. VPT is a
balanced binary tree of code vectors which in the
best case takes 2(log)O M EUD computations to
complete a CCS [4]. Their paper also studied
feature vector pre-quantization to reduce T which
tends to distort the speaker specific characteristics
ingrained in X . Further speedup studies of [4] are
based on heuristic pruning of unlikely codebooks.
In all, Kinnunen et al., [4] studied three speed
controlling parameters namely, ,M N and T by
combining afore mentioned speedup techniques.
The parameter d left unconsidered in [4] has
been studied in [7] for speeding up ASI through
partial distortion elimination (PDE) proposed in
[5] and [8].

PDE speedups CCS by terminating
computation of d dimensional EUD distance, as

Toggling & Circular Partial Distortion Elimination Algorithms to Speedup Speaker Identification based on Vector Quantization

 3

the sum 2

1
([] [])

d

i m
j

x j c j
=

−∑ becomes equal or

greater than currently minimum squared distance
at j d< . Ramasubramanian and Paliwal [6] have
reclassified previously proposed techniques to
speedup CCS under approximation and
elimination frame work. Most of these techniques
focus on reducing the effect of the
parameter M by explicitly approximating the
closest code vector and eliminating unlikely ones.
These techniques suffer from high overhead of
approximation and elimination which increases
with dimensionality [9].

An improvement is proposed in [9] for PDE
(to be called CSPDE in this paper) by reordering
of code vectors of LBG generated codebook in
decreasing order of clusters size. CSPDE [9] used
20 seconds long raw speech sampled at 8 kHz to
obtain vectors of dimension d = 4, 5, 6, 7, 8, 9, 10
by shifting 1 value for the next vector. The
multiplication operations saved for codebooks
sizes { }2 | 4 10,d d d d× ≤ ≤ ∈ were {32.7%,

20.9%, 19%, 20.8%, 10.6%, 10.2%, 4.3%} [9]
respectively, compared with the plain PDE. The
results however, showed a decrease in elimination
efficiency of CSPDE as compared to PDE for
larger vectors and larger codebooks. The static
and implicit approximation of CSPDE that has
resulted in small elimination for large vectors is
due to high entropy of code vectors [6, 9]. Since
ASI systems calculate (,)D X C for all registered
codebook to find the best match so sorted code
vectors of other 1N − codebooks might not be
favorable for speeding up CCS on the whole.

The overall problem addressed in this paper
is speeding up VQ based ASI without accuracy
loss. The stationarity of speech has largely been
unfocussed in previous studies for faster CCS. We
propose algorithms that track the variation of
speech in X by altering the scan order of code
vectors, taking advantage of proximity of code
vectors to hit the closest code vector the earliest.
Our algorithms depart from Voronoi view of
codebooks that depict random placement of code
vectors in d space and highlight proximity
relationship of code vectors. In this paper speed
controlling parameter d and T of ASI systems
are empirically investigated with more emphasis
on previously less emphasized parameter d .

3. The Proposed Techniques
It is concluded in [9] that LBG-generated

codebooks have no favorable order for speeding
up PDE. This conclusion is misconstrued and
insufficient. Voronoi view [13] of LBG-generated
codebook, as shown in Figure 1(a), does not show
any proximity relationship among the code
vectors. In this paper, we present view of an
intrinsic structure of LBG-generated codebook
that is natural to the construction process of LBG
algorithm. LBG process of codebook generation
provides us information that can be utilized for
efficient scan ordering.

LBG progressively generates double sized
codebook from the lastly generated codebook
starting from codebook of size 1. This is done by
splitting each cluster of training vectors in
previous codebook into a pair of smaller clusters
followed by tuning of new clusters. Each cluster
splitting step creates one new code vector away
from the previous code vector in one direction of
the d axis and another one in correspondingly
opposite direction of the d axis of the code vector
space d . The tuning step of LBG iterates
through the training vectors, ,~X till distortion
fails to improve. Each iteration checks
membership of the training vectors in the new
clusters, updates the new code vector based on the
latest membership and the computes the recent
total distortion. This progress in codebook
development through LBG in terms of
relationship between indexes of code vectors in
latest codebook and the previous codebook is
shown in Figure 1(b).

Therefore, proximity of code vectors in an
LBG-generated codebook follows a trend. The
code vectors occurring more adjacent in the
codebook tend to be more similar than the ones
falling farther apart. Three dimensional plot of
Figure 2 depicts the distance data averaged from
codebooks of 230 speakers of NIST 1999 speech
data. The distances between every pair of code-
vectors of 230 codebooks were computed for
32 32 1024× = pairs of indexes for each
codebook of size 32 15× . An average distance
of 230 codebooks was calculated for each pair of
index. The symmetry in Figure 2 shows an overall

Pak. J. Engg. & Appl. Sci. Vol.11, July, 2012

 4

Fig.1 LBG Codebook: (a) Typical Voronoi view

(b) LBG codebook generation, more
similar code vectors placed at more
adjacent indexes

Fig. 2 Proximity plot of code vectors in terms of

distance between pairs of code vectors of
32 sized codebooks of NIST-1999 data.

trend of decrease in distance between code
vectors if difference between their indexes in less.
This proximity relationship among code vectors

sets bases of multiple favorable routes for CCS as
capitalized in the proposed algorithms of this
paper.

To efficiently utilize proximity of adjacent
code vectors and stationarity of X, we propose
CPDE (Algorithm 1) for making CCS fast. CPDE
starts each CCS at code vector index vi for every
test vector using heuristic approximation based on
stationarity of X. For 2ix i T≤ ≤ value of vi

must be the index of closest code vector found in
previous CCS made for 1ix − . For 1x , value of vi

may be set 1 vi M≤ ≤ by the calling Algorithm 3.
The test feature vectors and codebooks are inputs
for CPDE.

Algorithm 1: Computing vector
distortion with CPDE

1: Set m vi= ; ′ = ∞σ ; 1k =
2: Do

2.1: Set 1j = ; 0=σ
2.2: Do

2.2.1: Set 2([] [])i mx j c j= + −σ σ

2.2.2: 2.4 :if goto′≥σ σ

2.2.3: Set 1j j= +

 while j d≤

2.3: Set ; vi m′ = =σ σ
▼ Select next code vector or the first

one

▼ if last was scanned currently

2.4: Set 1; 1m m if m M then m= + > =

2.5: Set 1;k k= +

while k M≤
3: Set (,)ie x C ′= σ

CPDE can be reduced to PDE algorithm by
eliminating step 2.4 as well as the two
assignments involving vi and then replacing k
by m in the algorithm. CSPDE is in fact PDE
with rearranged codebooks. CPDE locates the
closest code vector earlier than PDE and sets
σ ′ to the lowest value during CCS that causes
elimination condition, ,′≥σ σ to occur at smaller
values of j for remaining code vectors. CPDE

Toggling & Circular Partial Distortion Elimination Algorithms to Speedup Speaker Identification based on Vector Quantization

 5

follows a unidirectional circular scan of
codebook. In some cases, CPDE delays testing of
the closest code vector which is lying on the
opposite side of the circular scan.

Fig. 3 Typical search paths for PDE, CSPDE, CPDE

and TCPDE for vi = 9.

To reduce the likelihood of this delay, CPDE is
further improved by checking next adjacent code
vectors through switching back and forth between
clockwise and anti-clockwise directions. TCPDE
locates the closest code vector earlier more frequently
than CPDE and causes comparatively higher level of
elimination to speedup CCS further. Figure 3 shows
typical search paths for various PDEs studied in this
paper. Algorithm 2 describes TCPDE which toggles
during CCS.

Algorithm 2: Computing vector
distortion with TCPDE
1: Set m vi= ; m vi′ = ; ;′ = ∞σ 1k =

2: Do
2.1: Set 1j = ; 0=σ

▼ Clockwise scan of codebook

2.2: Do

2.2.1: Set 2([] [])i mx j c j= + −σ σ

2.2.2
2])[][(jcjxIf mi −+=σσ

2.2.3 Set 1j j= +
while j d≤

2.3: Set ; vi m′ = =σ σ

▼ For clockwise scan select previous
code vector

▼ or the last one if 1st was scanned
currently

2.4: Set 1; 1m m if m then m M= − < =

▼ For anti-clockwise scan select
previous code

▼ vector or the last one if 1st was
scanned currently

2.5: Set 1; 1m m if m M then m′ ′ ′ ′= + > =

2.6 Set 1j = ; 0=σ

▼ Anti clockwise scan of codebook

2.7 Do

2.7.1: Set 2([] [])i mx j c j′= + −σ σ
2.7.2: 2.9 :if goto′≥σ σ
2.7.3: Set 1j j= +
while j d≤

2.8 Set ; vi m′ ′= =σ σ
▼ Advancing scan in both directions

2.9 Set 1k k= +

while 2 k M× ≤
3: Set (,)ie x C ′= σ

Regarding floating point operations, the
consecutive steps ‘ 2([] [])i mx j c j′= + −σ σ ’ and
‘ :if goto label′≥σ σ ’ (to be called core-steps)
are common in PDE, CSPDE, CPDE and TCPDE.
The core-steps involve (1, 2, 1) MACs of floating
point numbers. A full CCS that computes all
distances completely performs first core-step
d M× times without performing second step but
computes ′≥σ σ condition M times and hence
involves (, 2 ,1)M d d× MACs. All variants of
PDE perform the core-steps d M′× times and
hence involve (1, 2,1)M d ′× × MACs, where d ′
is average of j values at which ′≥σ σ condition
occurs for M code vectors. Table 1 shows the
worst, best and average case analysis with
underlying assumptions for all variants of PDE.

Pak. J. Engg. & Appl. Sci. Vol.11, July, 2012

 6

Table 1: FLOPS analysis for all variants of PDE
for best, worst and average case

Case
Assuming

′≥σ σ
becomes true

MACs

(1, 2,1)×

Worst
at j d= or never

1m m M∀ ≤ ≤
M d×

Best
at 1j =

2m m M∀ ≤ ≤
1M d+ −

Average (worst + best) /2
1

2
Md M d+ + −

Regarding integer operations, CPDE

algorithm performs M additions and comparisons
more than PDE, whereas TCPDE algorithm
performs M/2 integer additions and comparisons
more than CPDE.

All variants of PDE as well as full CCS
require d×M×N and d×T floating point storage
location to store registered code books and test
feature vector sequence, respectively. Both CPDE
and TCPDE require only a single extra storage to
store the index of code vector best matched with
the previous test vector.

Identification of a speaker X from N
registered codebooks requires computations of
CCS for N×T number of times as given by
Equation (2).

1
arg ((,))min ss N

Speaker id s D X C
≤ ≤

=

(2)

Using total distortion in Equation (2) instead
of average distortion used in [4], the best
matching registered speaker is decided through
Algorithm 3 that computes CCS for less number
of times than N T× .

Algorithm 3: Computing minimum
speaker distortion using VSP
1: Set ; 1; 1;D s vi′ = ∞ = =

2: Do
2.1: Set 1i = ; 0D =

2.2 Do

2.2.1: Set (,)i sD D e x C= +

2.2.2 2.4 :if D D goto′≥

2.2.3 Set 1i i= +

while i T≤
▼ Update currently best distortion

and speaker Id

2.3 Set ;D D si s′ = =

2.4 Set 1;s s= +

 while s N≤
3: Output Test Speaker id = si;

Algorithm 3 improves decision about best
candidate speaker by updating speaker
index si and the minimum total distortion D′
which are initialized as 1 and ∞ , respectively.
The pair is updated each time

(,)sD X C D′≤ condition becomes true.
Algorithm 3 executes a full CCS or an algorithm
of PDE variant to compute (,)i se x C . Algorithm 3

avoids redundant evaluation of (,)i se x C by

terminating computation of (,)sD X C for the

current sC as D D′≥ condition becomes true

at i T< . Hence CCS is actually performed for
N T ′× number of times where T ′ is average of
i values when D D′≥ condition occurs for N

codebooks. Effectively it results in vector
sequence pruning (VSP) for unlikely codebooks
since T T′ < .

4. Experiment
4.1 Performance Parameters and

Evaluation
In this paper NIST-1999 [10] and TIMIT [11]

speech data were used for the speedup
experimentations. MFCC feature vector of
dimension d = 15 is used. Codebook sizes studied
were 32, 64, 128, 256, 512, 1024 and 2048. Further
details of data selection and feature extraction are
included in the appendix. All programs for feature
extraction, LBG algorithm and distortion
computation were made using Microsoft Visual C#
2008. Hardware used for performance testing was a
HP Compac DX7400 Microtower with Intel(R)

Toggling & Circular Partial Distortion Elimination Algorithms to Speedup Speaker Identification based on Vector Quantization

 7

Core(TM)2 Duo CPU E6550 @2.33 GHz with 2
Giga byte RAM installed. Operating system used
was Windows Vista Business version (2007).
Speaker identification time was computed using
‘DateTime.Now’ function of Microsoft.NET
framework. Already extracted feature vectors and
trained codebook stored in the hard were used for
this purpose.

4.2 Results and Discussion
Accuracy test results of different experiments

conducted on TIMIT and NIST-1999 speech data
for close-set speaker identification for full CCS,
PDE, CSPDE, CPDE and TCPDE are shown in
Table 2. Accuracy results are based on testing all
speakers in the two databases. Although, the
accuracy increases with increase in codebook
size, over fitting degradation effect is seen for
codebook size 1024 for TIMIT data set.
Experiments conducted for NIST-1999 in [4] used
120 seconds long speech samples for training and
30 seconds long ones for testing. All 692 test
samples used in [4] belong to 205 target speakers
only, while training and testing samples used in
this paper are 60 seconds long. This explains
comparatively different accuracy and absolute
identification times for NIST-1999 listed in this
paper since hardware used is also different. Using
training and testing sample selection of NIST -
1999 database same as ours for only 30 registered
speakers [12] reported an accuracy of 77% with
GMM-UBM and graph matching techniques.
Comparably we achieved 74.35% accuracy for
230 NIST-1999 registered speakers. Accuracies
are better than [7] for TIMIT data primarily due to
larger size of feature vectors used in this paper.

Table 2: Accuracy of VQ systems

Accuracy % Codebook
Size TIMIT NIST’99
32 87.14 65.65
64 97.30 70.43
128 98.89 71.74
256 99.84 73.91
512 100.00 73.91
1024 99.84 73.48
2048 -- 74.35

In order to compare approximation
performance of PDE, CSPDE, CPDE and TCPDE,
we counted the frequency percentage of hitting the
closest vectors during CCS for 32 indexes of the code
vectors for 230 codebooks of NIST-1999 data.
Average behavior of hitting closest code vector and
the scan order of code vectors is depicted in Figure 4.

It shows that 55% of times, closest code
vectors were correctly identified while scanning the
first code vector through CPDE and TCPDE. This is
major improvement as compared to PDE and CSPDE
for which the frequency of hitting the correct closest
code vector at the start of CCS is 4.2% and 3.5%,
respectively. In Figure 4 the triangular regions show
the improvement of TCPDE over CPDE delaying in
locating the closest code vector during CCS.

Incremental performance of PDE, CSPDE,
CPDE and TCPDE of hitting the closest code vector
with the progress in CCS is plotted in Figure 5. It
shows that on the average for TCPDE 90% of times
decision about closest code vector is finalized before
half scan of the codebooks while corresponding
values for CPDE, CSPDE and PDE are 74%, 64%
and 45%. The higher values relate to better
approximation achieved by the algorithm that causes
greater elimination.

Fig. 4: Average performance of PDE, CSPDE,

CPDE and TCPDE on hitting closest code
vector earlier in 32 sized codebooks of
NIST-1999 data

Pak. J. Engg. & Appl. Sci. Vol.11, July, 2012

 8

Fig.5 Comparison of PDE, CSPDE, CPDE and

TCPDE for correct selection of closest
code vector for 32 sized codebooks of
NIST’99 data

The complexity order of execution time of
VQ systems implies that the basic core-steps are
performed dM NT times to identify a test speech
speaker. Reduction in the number of times the
basic core-steps are performed is the measure of
the partial elimination capability of each
algorithm proposed in this paper. Table 3 and
Table 4 show average number of times the core-
steps are avoided as compared to full CCS for
registered speakers of TIMIT and NIST-1999 data
respectively. The values of () /d d d′− listed in
the tables are computed by actually counting the
executions of the basic steps for all the test speech
samples of the registered speakers for both
corpora. Size M , entropy H and normalized
entropy 2logH M of each codebooks studied are

listed in Table 3 and Table 4 for both corpora.

Where mm

M

m
PPH 2

1
log∑

=

−= and mP is fraction of

training vectors in each cluster of the codebook.

Table 3 and Table 4 show that normalized
entropy remains consistent against change in
codebook size. This trend is contrary to [9] which
indicate that normalized entropy depends only on
dimension d of MFCC vectors. The tables show
that reduction in the number of times core-steps
are performed by CSPDE, CPDE and TCPDE
with respect to PDE decreases with increase in
codebook. This is partly due to the fact that
reduction capability of PDE increases with
increase in codebook size. The proposed
algorithms CPDE and TCPDE cause substantially

reduced d′ and increase expected speedup factor
as compared to CSPDE. Although entropies of
code vectors for NIST-1999 data are larger than
TIMIT data, CSPDE results in smaller d′ for
NIST-1999 than for TIMIT.

Table 3: Elimination performance of PDE
variants for TIMIT data

M
H

Search
Algo
Used

d d
d

′−

%

Expected
Speedup
Factor

2logH M

32
4.80

PDE
CSPDE
CPDE
TCPDE

58.67
69.65
76.73
76.97

1
1.36
1.78
1.80 0.96

64
5.77

PDE
CSPDE
CPDE
TCPDE

65.37
75.56
79.97
80.28

1
1.42
1.73
1.76 0.96

128
6.73

PDE
CSPDE
CPDE
TCPDE

70.86
79.39
82.27
82.61

1
1.41
1.64
1.68 0.96

256
7.69

PDE
CSPDE
CPDE
TCPDE

75.02
82.25
83.93
84.28

1
1.41
1.56
1.59 0.96

512
8.61

PDE
CSPDE
CPDE
TCPDE

77.88
84.32
85.15
85.49

1
1.41
1.49
1.53 0.96

1024
9.46

PDE
CSPDE
CPDE
TCPDE

79.56
85.72
85.97
86.31

1
1.43
1.46
1.49 0.95

The expected speedup factor values with

respect to native PDE listed in Table 3 and Table
4 are calculated while ignoring the cost of extra
computation incurred on management of code
vector indices and that incurred on conditional
branching. Ignoring time for feature vector
extraction, Table 5 shows actual speedup

Toggling & Circular Partial Distortion Elimination Algorithms to Speedup Speaker Identification based on Vector Quantization

 9

performance based on average speaker
identification time for both corpora for the
algorithms proposed to guide reimplementation of
the techniques in real world systems. In Table 5
speedup factor of CSPDE with respect to plain
PDE decreases with codebook size for TIMIT
data but unusually high for codebook size 1024.
For NIST-1999 data, the speedup factor also
decreases with increase in codebook size but it is
unusually low for codebook size 64. CPDE and
TCPDE outperform CSPDE for both corpora for
all codebook sizes studied.

Table 4: Elimination performance of PDE
variants for NIST-1999 data

M
H

Search
Algo
Used

d d
d

′−

%

Expected
Speedup
Factor

2logH M

32
4.90

PDE
CSPDE
CPDE
TCPDE

53.91
70.10
78.08
78.30

1
1.54
2.10
2.21 0.98

64
5.88

PDE
CSPDE
CPDE
TCPDE

61.00
75.19
80.83
81.08

1
1.57
2.03
2.06 0.98

128
6.86

PDE
CSPDE
CPDE
TCPDE

66.95
79.00
82.74
83.02

1
1.57
1.92
1.95 0.98

256
7.85

PDE
CSPDE
CPDE
TCPDE

71.69
81.62
84.21
84.42

1
1.54
1.79
1.82 0.98

512
8.82

PDE
CSPDE
CPDE
TCPDE

75.43
83.59
85.27
85.58

1
1.50
1.67
1.70 0.98

1024
9.77

PDE
CSPDE
CPDE
TCPDE

78.14
85.09
86.13
86.42

1
1.47
1.58
1.61 0.98

2048
10.66

PDE
CSPDE
CPDE
TCPDE

80.00
86.24
86.71
87.07

1
1.45
1.51
1.55 0.97

Table 5: Time based average speedup
performance of CSPDE, CPDE and
TCPDE compared with PDE

TIMIT Data NIST-1999 Data Code
Book
Size

Search
Algo
Used

ID
Time (S)

Speedup
Factor

ID
Time (S)

Speedup
Factor

32

PDE
CSPDE
CPDE
TCPDE

0.60
0.55
0.44
0.40

1
1.09
1.37
1.48

1.48
1.24
0.95
0.85

1
1.13
1.56
1.74

64

PDE
CSPDE
CPDE
TCPDE

1.03
0.96
0.76
0.71

1
1.08
1.37
1.45

2.52
2.21
1.65
1.57

1
1.05
1.53
1.61

128

PDE
CSPDE
CPDE
TCPDE

1.81
1.74
1.35
1.26

1
1.04
1.34
1.43

4.43
4.01
2.93
2.76

1
1.11
1.51
1.61

256

PDE
CSPDE
CPDE
TCPDE

3.24
3.15
2.50
2.33

1
1.03
1.29
1.39

7.81
7.39
5.39
5.06

1
1.06
1.45
1.54

512

PDE
CSPDE
CPDE
TCPDE

6.00
5.80
4.84
4.48

1
1.03
1.24
1.34

14.22
13.76
10.37
9.71

1
1.03
1.37
1.46

1024

PDE
CSPDE
CPDE
TCPDE

11.07
10.48
9.13
8.45

1
1.06
1.21
1.31

25.77
25.09
19.83
18.44

1
1.03
1.3
1.4

2048

PDE
CSPDE
CPDE
TCPDE

-- --

47.19
45.57
38.24
35.23

1
1.04
1.23
1.34

CPDE is up to 37% and 56% faster than PDE
for TIMIT and NIST-1999 data respectively.
Figure 4 shows that CPDE hits the closest code
vector after half scan of the codebook for 23% of
time. This drawback is reduced by TCPDE
through toggling between clockwise and anti-
clockwise directions. That is why TCPDE is up to
48% and 74% faster than PDE for the respective
corpora. Better speed of CPDE and TCPDE than
that of CSPDE empirically proves the existence of

Pak. J. Engg. & Appl. Sci. Vol.11, July, 2012

 10

M favorable scan orders that are temporally
selectable to maximize the utilization of
stationarity in speech signal. Speedup results
shown in Table 3 to Table 5 are without vector
sequence pruning. In order to compare our
framework for ASI speedup with [4] we combine
VSP individually with CPDE and TCPDE,
respectively represented as VSPCPDE and
VSPTCPDE. Table 6 shows speedup performance
of VSPCPDE and VSPTCPDE for TIMIT and
NIST-1999 databases with respect to baseline full
search.

Table 6: Average performance of VSPCPDE
and VSPTCPDE

TIMIT Data NIST-1999
Data Code

Book
Size

Search
Algorithm
Type Time

(S)
Speedup
Factor

Time
(S)

Speedup
Factor

32
Baseline
VSPCPDE
VSPTCPDE

1.40
0.40
0.37

1
3.53
3.77

3.19
0.80
0.76

1
3.97
4.19

64
Baseline
VSPCPDE
VSPTCPDE

2.70
0.67
0.62

1
4.01
4.37

6.22
1.38
1.3

1
4.52
4.78

128
Baseline
VSPCPDE
VSPTCPDE

5.25
1.19
1.10

1
4.41
4.77

12.18
2.44
2.29

1
4.98
5.32

256
Baseline
VSPCPDE
VSPTCPDE

10.52
2.18
2.01

1
4.83
5.23

24.16
4.47
3.9

1
5.41
6.20

512
Baseline
VSPCPDE
VSPTCPDE

21.08
4.17
3.83

1
5.05
5.50

48.37
8.58
8.01

1
5.64
6.04

1024
Baseline
VSPCPDE
VSPTCPDE

42.19
7.87
7.28

1
5.36
5.79

95.93
16.41
15.3

1
5.85
6.27

2048
Baseline
VSPCPDE
VSPTCPDE

-- --
191.18
31.50
29.11

1
6.07
6.57

The speedup factors shown in Table 6 for

NIST-1999 data are better than those for TIMIT
data for corresponding codebook size. The
combinations VSPCPDE and VSPTCPDE have

same accuracies as given in Table 2 for the
respective corpora and the codebook size. The
speedup factors of VSPCPDE and VSPTCPDE in
Table 6 are double than those for VPT combined
with speaker pruning as reported [4].

5. Conclusions
A framework for speeding up VQ based real-

time speaker identification without accuracy loss
has been presented. The innate stationarity in test
feature vector sequence has been capitalized to
substantially improve partial elimination as
compared to native PDE and CSPDE. For this,
implicit approximation scheme of selecting the
closest code vector from previous CCS as first
candidate is proposed. Departing from Voronoi
view of VQ codebook, proximity insight of LBG
arrangement of code vector indexes has been
utilized to propose CPDE for a higher level of
elimination through circular scan orders of code
vectors. CPDE is faster than simple PDE up to
37% for TIMIT and up to 56% for NIST-1999
data, respectively. The delayed hitting of the
closest code vectors existing on the other side of
circular direction is avoided by proposed TCPDE
through toggling between clockwise and anti-
clockwise directions. TCPDE is faster than typical
PDE up to 48% for TIMIT and up to 74% for
NIST-1999 data, respectively. Better speed of
CPDE and TCPDE than that of CSPDE
empirically indicates the existence of M favorable
scan orders that are temporally selectable to
maximize utilization of stationarity in speech
signal. Vector sequence pruning has also been
utilized for codebooks proving unlikely in
VSPCPDE and VSPTCPDE. For TIMIT and
NIST-1999 data speedup factors achieved by
VSPCPDE on the average are up to 5.36 and 6.07
respectively as compared to baseline full search.
The speeding up factors of VSPTCPDE for both
the data are up to 5.8 and 6.6 respectively.

6. Acknowledgements
Funding support of University of

Engineering and Technology, Lahore, Pakistan, is
highly appreciated. Public service of Linguistic
Data Consortium, University of Pennsylvania,
USA, for providing speech data is gratefully
acknowledged.

Toggling & Circular Partial Distortion Elimination Algorithms to Speedup Speaker Identification based on Vector Quantization

 11

7. References
[1] T. Quatieri, Discrete-time Speech Signal

Processing Principles and Practice, Pearson
Education, 2002

[2] T. Kinnunen, H. Li, An Overview of Text-
Independent Speaker Recognition: from
Features to Supervectors, Speech
Communication, Elsevier, 52,(1), (2010)
pp.12-40

[3] A. Glaser, and F. Bimbot, Steps Towards the
Integration of Speaker Recognition in Real-
world Telecom Applications, Proc., Int.
Conference on Spoken Language Processing,
(ICSLP) Sydney, NSW, Australia,1998.

[4] T. Kinnunen, E. Karpove, and P. Franti,
Real-Time Speaker Identification and
Verification, IEEE Transactions on Audio
and Language Processing, January 14, (1),
(2006) pp. 277-288.

[5] H. Bei, R. Gray, An Improvement of the
Minimum Distortion Encoding Algorithm for
Vector Quantization, IEEE Transactions on
Communication, 33,(10), (1985) pp.1132-
1133

[6] V. Ramasubramanian and K. Paliwal, Fast
Nearest-Neighbor Search Algorithms Based
on Approximation-Elimination Search,
Pattern Recognition, 33,(9), (2000) pp.1497--
1510

[7] M. Afzal, and S. Haq, Accelerating Vector
Quantization Based Speaker Identification,
Journal of American Science, 6, (11), (2010)
pp.1046-1050

[8] D. Cheng, A. Gersho, B, Ramamurthi and Y.
Shoham, Fast Search Algorithms for Vector
Quantization and Pattern Matching,
Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal
Processing, 1, (1984) pp. 9.11.1-9.11.4

[9] K. Paliwal and V. Ramasubramanian, Effect
of Ordering the Codebook on the Efficiency
of the Partial Distance Search Algorithm for
Vector Quantization, IEEE Transactions on
Communications, 37,(5), (1989) pp. 538-540

[10] A. Martin and M. Przybocki, The NIST 1999
Speaker Recognition Evaluation-- An
Overview, Digital Signal Process., ,10,
(2000) pp.1-18. http://www.ldc.upenn.edu/

[11] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus,
D. Pallett, N. Dahlgren and V Zue, TIMIT
Acoustic-Phonetic Continuous Speech
Corpus,. 1993. http://www.ldc.upenn.edu/

[12] V. Hautamäki, T. Kinnunen and P. Fränti,
Text-Independent Speaker Recognition
Using Graph Matching, Pattern Recognition
Letters, 29,(9), (2008) p.1427-1432

[13] D. Salomon, Data compression: the complete
reference, Volume 10, 4th Ed, Springer, 2007.

Pak. J. Engg. & Appl. Sci. Vol.11, July, 2012

 12

A.1 Speech Data Selection

NIST 1999 speaker recognition evaluation
corpus [10] was used in the experiments to
investigate speedup of proposed framework for
ASI. In order to tune parameters of speaker
identification system TIMIT [11] speech data,
consisting of 630 speakers, was used after down
sampling it to 8 kHz using anti-aliasing filter.
TIMIT data consists of clean microphone speech.
There are 10 speech sample files for each of the
speaker, in which 2, 5, 3 files are categorized as
‘sa’, ‘sx’ and ‘si’, respectively. All ‘sa’ and ‘sx’
files containing same text read by each speaker
were concatenated to extract MFCC feature
vectors to generate codebooks. The average
duration of the concatenated training samples was
22.4 second. Three ‘si’ files containing different
text read by each speaker were concatenated to
extract MFCC test feature vectors. The average
duration of test samples was 8.4 second.

NIST-1999 data for one-speaker detection
test consist of 230 male speakers whose
telephonic conversations were recoded in two
different sessions. We converted µ-Law
companded speech data into linear PCM format
and used ‘a’ files for training and ‘b’ files for
testing. Average duration of speech per speaker
used for training or testing was approximately 60
seconds. The speech sample selection both for
TIMIT and NIST-1999 corpora conforms to text
independent speaker identification setup. The data
selection thus allowed speaker identification
testing for all registered speaker for both corpora.

A.2 Feature Extraction and Codebook
Generation
The digital speech samples were divided into

frames, each of 30 milliseconds duration with

40% shift among consecutive frames. To remove
silence, 15% average frame energy threshold was
used. Frame energy thresholding reduced the
training feature vectors by 8.91% and 8.57% for
TIMIT and NIST-1999 data, respectively, while
testing vectors were reduced by 5.9% and 5.5%,
respectively. Hamming window was applied to
each non-silence frame before taking Fast Fourier
Transform (FFT) to find magnitude spectrum.
Filter bank of 27 triangular filters spectrum
approximating to Mel-frequency scale was
applied to each frame as given in Equation (3).

)700/1(log2595 10 LinMel ff += (3)

Where Linf frequency is on linear scale and Melf
is corresponding frequency in Mel scale. For
TIMIT data, output of all 27 triangular filters was
processed. Subsequently outputs of triangular
filter banks were log compressed to take DCT.
Ignoring the first value, next 15 values of DCT
cepstrum were selected as 15-dimensional MFCC
feature vectors. For telephone conversation based
NIST-1999 speech data 15 dimensional MFCC
vectors were generated while ignoring first 3 and
last 3 triangular filters. Triangular filters bank
sized 25, 27, 29, 31 were tried. Filterbank of 31
filters that gave the highest accuracy was selected.
MFCC vectors of test samples were computed
once and stored for tests. VQ codebooks of sizes
{2 | 5 10}n n≤ ≤ and {2 | 5 11}n n≤ ≤ were
computed through LBG algorithm from TIMIT
and NIST-1999 data respectively. However, code
vectors were sorted in decreasing order of cluster
size for experimentation of CSPDE.

Appendix

Toggling & Circular Partial Distortion Elimination Algorithms to Speedup Speaker Identification based on Vector Quantization

 13

ASI = Automated speaker identification

C = Codebook – set of M code vectors

sC = Codebook of speaker with index s

CCS = Closest code vector search
CPDE = Circular partial distortion

elimination
CSPDE = Cluster size based partial distortion

elimination

c = Code vector of a codebook

d = Size of code vector – number of
elements in a code vector

D = Total distortion of all test vectors in
X with a codebook

D ′ = Threshold minimum total distortion
DCT = Discrete cosine transform
EUD = Euclidean distance
FFT = Fast Fourier transform

Linf = Linear frequency

Melf = Mel frequency

GMM = Gaussian mixture model

H = Entropy of code vectors in a
codebook

H/log2M = Normalized entropy of code vectors
in a code book.

LBG = Linde Buzo Gray

M = Codebook size--number of c in a C

MFCC = Mel frequency cepstral coefficient

N = Number of registered speakers in an
ASI system

NIST = National institute of standard and
testing

PDE = Partial distortion elimination

PDEs = Refers to any of PDE, CSPDE,
CPDE or TCPDE algorithm

 = Real number space

′σ = Threshold distance between x and
c

TCPDE = Toggling circular partial distortion
elimination

TIMIT = TI (Texas Instrument) and MIT
(Massachusetts Institute of
Technology)

VPT = Vantage point tree

VQ = Vector quantization

VSP = Vector sequence pruning

vi = Code vector index best matched
with previous test vector

T = Number of x in X

T = Number of x in X

X = Vector sequence for speaker testing

X = Vector sequence for speaker training

ix = An i -th test vector of X

ix = An i -th training vector of X

List of Acronyms and Symbols

