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Abstract 

An accurate numerical technique for the numerical simulation of 1D reacting flow problems is 

implemented. The technique is based on nodal discontinuous Galerkin finite element method that 

makes use of high order approximating polynomials within each element to capture the physics of 

reacting flow phenomena. High performance computing is achieved through parallelization of the 

computer code using MPI to run on any distributed memory parallel computing architecture. The 

developed parallel code is tested on a PC with modern multicore CPUs, and on a multi-node compute 

cluster made up of commodity PC hardware, having gigabit Ethernet as the interconnect. The results 

presented are in good agreement with those available in the literature. 
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1. Introduction 

Computational Fluid Dynamics (CFD) is 

extremely useful and promising way to forecast or 

reconstruct the behavior of certain engineering 

products or physical situations through numerical 

simulations. Most of the physical experiments might 

be impossible to be carried out, expensive to be 

performed or less insight providing. The simulations, 

on the other hand, are more likely to be carried out, 

lesser expensive to be performed and provide more 

insight and comprehensive information. CFD 

simulations reduce the number of required 

experiments during development and testing of new 

products. For example, the number of wind-tunnel 

hours required for the development of Boeing-747 

aircraft (in 1963) was reduced by a factor of 10 for 

Boeing-767 (in 1982) and was further reduced by 

another factor of 10 for Boeing-777 (in 1998). The 

main enabling factors for so impressive 

developments in CFD during past three decades are 

enormous growth in computing capabilities, steep 

decline in computing cost and development of more 

and more efficient algorithms [1]. 

In CFD, the simulation of flows often requires 

solving partial differential equation (PDEs) 

numerically. Common methods used for numerical 

solution of PDEs are Finite Difference Methods 

(FDM), Finite Volume Methods (FVM) and Finite 

Element Methods (FEM). Yet there is another class 

of methods, Discontinuous Galerkin Finite Element 

Methods (DG-FEM or simply DGM), also referred to 

as hybrid FEM/FDM/FVM methods. DGM combines 

a number of benefits and overcomes a number of 

weaknesses of finite element and finite volume 

methods. In DGM, the solution is approximated by 

high order polynomials within each cell (like in 

FEM) but without the global continuity requirement, 

while the physics of wave propagation is accounted 

for by using some numerical flux scheme (like in 

FVM) to cope with discontinuous representation of 

the solution at element interfaces. In principle, the 

accuracy in DGM is achieved by the high order local 

polynomial approximations and the stability is 

achieved by careful selection of flux scheme. 

Absence of global continuity requirement of the 

solution, i.e., independency of polynomial 

approximation in an element from that of other 

elements, makes DGM very compact. This feature, in 

conjunction with some other desired numerical 

properties, makes DGM very flexible so that it allows 

easy handling of a vast range of cell types and mesh 

topologies. It allows the use of adaptive techniques 

(like h- and p- refinements). It also supports easy 

implementation of certain strategies for solver 
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acceleration, in both serial and parallel programming 

environments. A comparison of generic properties of 

these methods is given in Table 1, adapted from [2]. 

In Table 1, „Y‟ means that the method is capable, „N‟ 

means that the method has shortcoming, and „Q‟ 

means that the method is capable but with 

modification and is not a preferred choice. 

Discontinuous Galerkin Method has recently 

gained popularity for the solution of systems of 

conservation laws on unstructured grids. However 

several issues of DGM need to be addressed. These 

issues include high CPU/memory requirements 

(compared to FVM or High Order FDM) because of 

increase in number of degrees of freedom, and 

oscillations in presence of strong discontinuities. 

DGM is also low tolerant to its under-resolved 

features. The challenge is to make DG competitive, 

or at least compliment, to the well established 

schemes for real-world problems. Some accounts of 

history and developments of DGMs can be found in 

[2,3]. Some significant landmark DGM formulations 

are [4-14]. 

Table 1: A comparison of spatial discretization 

schemes 

  
FDM FVM FEM DGM 

Complex Geometry N Y Y Y 

Higher Order 

Accuracy and 

Adaptivity 

Y N Y Y 

Compactness N N Y Y 

Explicit Semi 

Discrete Form 
Y Y N Y 

Conservation Laws Y Y Q Y 

Elliptic Problems Y Q Y Q 

 

A basic problem in CFD is to develop accurate 

and efficient solvers for the simulation of reacting 

flows. Reacting flows are characterized by the 

presence of multiple scales, including reaction fronts, 

boundary layers and shocks. It is possible for the 

reaction front to move at some velocity other than the 

velocity of the fluid and the moving fronts may be 

sharp, as well. The numerical method should be 

capable of accurately resolving such flows. The 

numerical methods mostly used for such problems 

are adaptive, especially with moving finite elements 

or moving grid [15-20]. In the present paper, instead 

of using some adaptive technique, the objective of 

our work is to apply DGM with high order 

approximating polynomials locally within each 

element to perform numerical simulation of reacting 

flows. We solve three selected reacting flow 

problems, two from flame propagation in combustion 

and one from mathematical biology, using a 

discontinuous Galerkin method that is based on so-

called „nodal‟ approach [2]. Section 2 of this paper 

presents the nodal discontinuous Galerkin method. 

Our next contribution in this paper is to develop 

a parallel solution of our serial nodal discontinuous 

Galerkin code to run on a parallel computing 

architecture. We also perform scalability analysis of 

our parallel code on a number of parallel computing 

machines, including a PC with 8 processing cores, 

and a cluster of PCs. For parallelization, we use 

Message Passing Interface (MPI) library [21]. MPI is 

a scalable parallel programming standard specially 

developed for distributed memory parallel machines. 

It has evolved as a de facto industry standard for 

message passing programming. A number of MPI 

implementations have been created, which include 

both open-source (free) and commercial ones. 

Keeping in view our problem sizes and the algorithm, 

we tested our parallel code on a standalone PC with 

multicore CPUs and on a small multi node cluster 

PCs. Clusters of PCs are composed of commonly 

available hardware components [22]. Therefore they 

are experienced as a very cost effective solution for 

parallel computing. They are also sometimes called 

Beowulf clusters. Section 3 describes the 

parallelization platforms, software‟s and strategies 

used in the present work. Section 4 lists our selected 

example problems and Section 5 consists of results 

and discussion. Section 6 gives the conclusions. 

2. The Nodal Discontinuous Galerkin 
Scheme for 1D Diffusion Equations 

In the current work, the nodal version of 

discontinuous Galerkin finite element method is used, 

as described in [2]. The governing equations of 

reacting flow problems considered in this study 
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constitute systems of 1D diffusion equations. Here 

we give DGM formulation of a general 1D diffusion 

equation with stiff source term that can be used for 

high order discretization of 1D diffusion equations. 

This equation can be expressed as, 

   guuau
xxt

 ,  RLx ,  (1) 

For approximating the solution of PDEs 

involving high order spatial derivatives by DGM, 

first rewrite the high order spatial derivative as a 

system of first order ordinary differential equations 

(ODEs). For this, we introduce a new variable, 

  ,uuaq x  (2) 

and rewrite (1) as follows: 

    
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




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x
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 (3) 

For the discretization of the above system with the 

DGM usually called Local DGM for (1), we divide 

the domain  into K disjoint, non-overlapping 

elements, D
k
, such that, 

,
1

k
K

k

D

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where denotes the direct sum. We define a 

global space Vh for the test functions as, 

k
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k
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 (5) 

where k

h
V  is a local space generated by Nth degree 

polynomials Npi
i

,,,, 21 , defined on the 

elements, D
k
. 1 NN

p
 is the number of grid points 

in D
k
 used for constructing interpolating polynomials 

i. We seek to obtain an approximation ),( k
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),( qu  such that both k
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h
qu and  belong to the finite 

dimensional space, k

h
V . Now multiplying (3) with 

arbitrary test function n and integrating over the 
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k
, we get, after performing integration by 

parts, 
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where D
k
 is the boundary of D

k
, and ))(ˆ(

k

h
qan  and 

))(ˆ(
k

h
uan   are fluxes across the element in the unit 

normal direction, n̂ , to the boundary. These fluxes are 

replaced by suitably chosen numerical fluxes denote 

by ))(ˆ(
 k

h
qan and ))(ˆ(

 k

h
uan in (6) and (7) and 

lead to the following weak form of (3) on each 

element, D
k
: 
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The above equations give DGM formulation of 

(3) in weak form. It requires test functions to be 

smooth. In situations where non-smooth test 

functions are to be used, we may employ strong form 

of DGM formulation which is obtained by integrating 

by parts of (8) and (9) once again: 
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In the nodal implementation of DGM, k

h

k

h
qu ,  and 

the source term  k

h
ug  represented by, 
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where  xk

i
  are N-th order Lagrange polynomials 

on kD and form basis of k

h
V . In present work we 

employ strong form given by (10) and (11). Use of 

(12) and (13) in (10) and (11) leads to the following 

system of differential algebraic equations, 
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is the mass matrix, 
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are the stiffness matrices,  Tk

Np

kk

h
uu ,,

1
u , 

 Tk

Np

kk

h
qq ,,

1
q  are the solution vectors, 

 Tk

Np

kk

h
gg ,,

1
g is a vector of values of source term 

at the known value and  Tk

Np

kk

h
 ,,

1
L  is a vector of 

basis functions. In this work we consider a as 

constant so that S and S
~

are the same. 

Because of discontinuous nature of the 

discretization scheme we do not need to assemble 

global system. Rather the above equations are solved 

independently on each element. Therefore, both sides 

of (14) and (15) can Left-multiplied by inverse of M
k
. 

The resulting system of ODEs is solved by the low-

storage five stage fourth-order explicit Runge Kutta 

method [23]. For stable evaluation of the high order 

polynomials in the implementation of nodal DGM, 

the Np nodes in the element are chosen to be the 

zeros of    
iN

rxP
dx

d
x21 , in the reference element 

[1,1], where  xP
N

 is the Legendre polynomial of 

order N. These are also known as Legendre-Gauss-

Lobatto (LGL) nodes. 

To compute the integrals in the expressions for 

the mass matrix M and the stiffness matrix S, the 

integrals are transformed into reference element 

[1,1], and then use the relation 

VL(r) = P(r) (18) 

and the orthonormality of Legendre polynomials to 

compute M and S as, 

M = (VV
T
)
1

 and S = M(VrV
1

), (19) 

as given in [2]. Here P(r) = [P0(r), P1(r), P2(r), … , 

PN(r)]
T
 is the vector of Legendre polynomials of 

order upto N, V is the vendermonde matrix defined 

as, 

Vij = Pj1(ri), (20) 

and Vr is the matrix whose entries are the derivatives 

of the Legender polynomials at nodal points, i.e., 

 
ir

j

jir
dx

dP
V 

,
 (21) 

These representations enable formulation of 

operators M and S without integrals, due to 

orthonormality of Legendre polynomials; hence a 

quadrature free implementation of nodal DGM is 

achieved, as in [24]. 

3. Parallel Solution 

Numerical simulations of flows greatly rely on 

high performance computing (HPC). Perhaps the 

most effective way of achieving HPC is the parallel 

computing. Clusters of PCs may offer the most cost 

effective solution to fulfill the need of high 

performance parallel computing capabilities for 

numerical simulations. Clusters compliments rather 

than competes with the more sophisticated parallel 

computing architectures. Because of the cost 

effectiveness, 414 HPC machines out of top 500 

known HPC machines as of November 2010 are 
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clusters at the World level and they are having 

around 55.6% of the total number of CPUs used in all 

the top 500 HPC machines, as mentioned at [25]. 

Introduction and so rapid advancements in 

multicore CPU technology have given substantial 

acceptance of these as another parallel computing 

platform. PCs with 1-4 CPUs, with each CPU having 

1-12 are quite common these days. Thus such PCs 

can run 1-48 processes in parallel, accordingly. 

However, getting respective parallel performance 

with such machines depends strongly on the 

algorithm and the program design. Infact, multicore 

CPUs are appearing to be the one on which the 

biggest supercomputing machines are relying by 

considering them as building blocks. However in 

such machines sufficiently fast memory hierarchies 

and interconnect fabrics and I/O systems would be 

necessary for acceptable parallel efficiencies. 

Recently a more advanced and extremely fast, 

but under-developing and tricky, way of computing is 

realized that make use of graphical processing units 

(GPUs) for explicit parallel computations. With a 

GPU installed in a computer 10 time faster speed can 

be achieved, at least in theory. The locality of 

memory accesses (due to compactness of DGM) and 

higher order nature of DGM makes it suitable to be 

implemented on off-the-shelf, massively parallel 

graphics processors (GPUs), as demonstrated in [26]. 

We use following systems (each system with 

healthy size of DDR2 RAM with 800MHz or higher 

speed) to run our parallel codes: 

SYSTEM-1: It is a PC having two Xeon-5520 

(8MB L2 Cache, 2.26 GHz clock speed, 5.86 GT/sec 

QPI) quadcore processors (having code name 

Nehalem/Gainestown). Thus it has 8 CPU cores and 

is able to run up to 8 processes in parallel. The 

QuickPath Interconnect (QPI) technology has 

recently been introduced by Intel, replacing the 

legacy Front Side Bus (FSB) technology, to help in 

removing certain performance bottlenecks, including 

the starvation of memory bandwidth, quite commonly 

experienced on the multi core processors. Because of 

its efficient memory subsystem based on QPI and a 

turbo memory controller, the Nehalem/Gainestown 

processor is experienced to be faster than FSB based 

processors from Intel for the codes, like most CFD 

codes, whose performance is often bounded above by 

the memory bandwidth. 

SYSTEM-2: It is an 8-node cluster, with each 

node having two Xeon-5140 (4MB L2 Cache, 2.33 

GHz clock speed, 1333 MHz FSB) dualcore 

processors (having code name Woodcrest). Thus it 

has 32 CPU cores and is able to run up to 32 

processes in parallel. The nodes in the cluster are 

interconnected with Gigabit (1000baseT) Ethernet 

switch for inter-processor communication. For the 

testing purposes, we use this system with not more 

than one process mapped on each node. This helps in 

reducing the memory contention that commonly 

arises when more than one process within a node 

simultaneously access the memory. Moreover this 

also helps in reducing network interface contention 

that arises when the network bandwidth available to 

one node is shared among many processes on that 

node. 

The operating system installed for these systems 

is Linux. The software setups include 64bit-compilers 

and MPICH library [21], which is an open source 

MPI implementation. All the floating point 

operations are performed in double precision. 

Discontinuous Galerkin method is highly 

parallelizable, mainly because of compact or local 

nature of the discretization. The polynomial solution 

in each cell is independent of the solutions in other 

cells, thus the inter-element communication is 

required only with adjacent cells, for flux 

computations at the cell-interface, which is shared 

between two adjacent cells. Thus the method favors 

the formulation of very compact numerical schemes. 

In a parallel code of DGM the computational domain 

is partitioned among the available processes. The 

communication between any two processes is 

required only if one process has some cells whose 

one or more edges lie on the so called „partition 

boundary‟, such that the adjacent cell belongs to the 

other process. 

3.1 The Strategy 

In this work, only one MPI process is mapped to 

one processing core, so that the terms „process‟, 

„processor‟ and „CPU core‟ are interchangeable. The 

master/head process generates mesh and reads in the 
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parameters values. Then after domain decomposition 

it sends the respective parts of the mesh to other 

processes available, and it broadcasts the parameters 

values to all other processes. After that each process 

constructs operators locally. Although it was possible 

that master process might construct these operators 

and broadcast to others; for better performance we 

used the other way. Then each process constructs 

various arrays of its neighborhood information. Then 

each process computes initial solution on its mesh 

part. The low storage five stage fourth order explicit 

Runge-Kutta (RK) method [23] is used for time 

integration. At each stage of the RK method, the right 

hand side (RHS) of the equation, obtained through 

local discretization of the problem using nodal DGM, 

is computed. The communication of values at inter-

processes partition boundary points is carried out in 

the subroutine that computes the RHS on each 

element. The subroutine also implements boundary 

conditions and some numerical flux scheme. In this 

work, we used central flux scheme for simplicity [2]. 

Necessary barrier points are inserted in the parallel 

code to have synchronization among all the 

processes. 

A parallel code has two operational parts, i.e., 

computation and communication. In our parallel code 

we overlapped communication with computation, as 

much as could be permitted by the algorithm. This 

can be accomplished by initiating non-blocking 

sending and receiving operations in such a way that 

the computations remain continue in the meantime 

the communication is being carried out. Such a 

technique may be called as hiding communication 

behind computation [13,27]. 

3.2 Parallel performance 

For a given problem size, the performance of a 

parallel code on a distributed memory parallel 

machine consisting of inter-connected processing 

nodes depends, in general, on many factors including, 

 Number and frequencies of CPUs 

 Memory characteristics (capacity, bandwidth etc) 

 Bandwidth and latency of the interconnect 

 Communication to computation ratio. 

A number of metrics are available in literature 

and commonly used to quantify performance of 

parallel programs. These metrics include, “total 

execution time”, “relative speedup”, and “relative 

efficiency”. In this work, the “relative speedup” and 

“relative efficiency” will simply be called “speedup” 

and “efficiency”, respectively. Execution time 

consists of computation and communication time, 

both. It is “the elapsed wall clock time from the start 

of execution of first process of a parallel program to 

the end of execution of its last process”. Relative 

speedup, , of a parallel program is “the ratio of 

elapsed time, 1, taken by one process to solve a 

problem to the elapsed time, p, taken by n processes” 

to solve the same problem, i.e., 

 = 1/n (22) 

The relative efficiency, , is defined as  

 = /n. (23) 

In general, speedup is observed less than n and 

efficiency is observed between 0 and 1. In an ideal 

case, 

p = 1/n,  = n and   = 1. (24) 

Sometimes so called “super-linear speedup” is 

observed where speedup is greater than n. This 

phenomenon is caused by the cache efficiency with 

smaller data sizes on the n processors as compare to 

the single processor case. Scalability is another 

characteristic of parallel programs that measure how 

much efficiency is sustained when the processing 

resources and the problem size are both increased in 

proportion to each other [28]. Scalability of our 

parallel program is analyzed in Section 5. The 

scalability analysis performed reflects that how the 

speedup of the program increases with an increase in 

the number of processes for a given problem size. 

4. Numerical Examples 

4.1 A Moving Unsteady Flame Front 

Our first numerical example is a benchmark 

problem for numerical methods in flame propagation 

proposed in [29]. Its equations are given by, 

 YTfTT xxt , , 

 YTfY
Le

Y xxt ,
1

 , ),,(),,(  0tx  
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where  
 
 














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T

T
Y
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YTf

11

1
exp

2
,

2




. 

Here ),,( txTT   temperature, and 

),,( txYY  chemical species, are the dependent 

variables. Moreover, the Lewis number, Le = 2.0, the 

non-dimensional activation energy,  = 20 and for the 

non-dimensional heat release  = 0.8. The initial and 

the boundary conditions are, 

 
 








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0for0.1

0forexp
0,

x

xx
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 
 










0for0.0

0forexp0.1
0,

x

xxLe
xY  

 

  0.0,  tT ,   0.0,  tTx   for t > 0 

  0.1,  tY ,   0.0,  tYx    for t > 0. 

The solution of this problem is an oscillating 

flame that accelerates positively and negatively in 

cycles. Only high skilled algorithms have been able 

to determine the amplitude and frequency of the 

flame oscillations, for example in [17,18]. 

4.2 Dwyer-Sanders Flame Propagation 
Model 

Our second numerical example is the one-

dimensional flame propagation problem proposed in 

[30]. The model is a reaction-diffusion system, given 

by, 

 TRYYY xxt   

 TRYTT xxt  , ),,( 10x  

where   






 


T
TR

4
exp1052.3 6 . 

In this system, ),( txTT  and ),( txYY   

represent temperature and density of the chemical 

specie, respectively. The initial and the boundary 

conditions are, 

  0.10, xY ,   2.00, xT . 

  0.0,0 tYx ,   0.0,0 tTx ,   0.0,1 tY  

 













....

.
.

.
,

006000020for21

000200for
00020

20
1

t

t
t

tT  

A number of fundamental characteristics of 

flame propagation are simulated in this problem. The 

heat source that generates a steep flame front is 

modeled by the time-dependent forcing function R. 

When the temperature reaches its maximum, the 

flame front starts to propagate from the right to left at 

almost constant velocity around 150. The flame front 

reaches nearly the left boundary at t = 0.006. 

4.3 Fitzhugh-Nagumo Equations of 
Mathematical Biology 

Our third numerical example is a problem based 

on famous Fitzhugh-Nagumo Equations of 

Mathematical Biology [16,18,19]. These are one-

dimensional reaction-diffusion equations, providing a 

conceptual model of ionic current flow across a semi-

infinite nerve membrane, and are given by, 

   vaauuuu
xxt

 1 , 

 vcubv
t

 ,   ).,(),,(  01200 tx  

Here u = u(x,t) represents electro-chemical 

potential, and v = v(x,t) represents recovery variable 

for returning of the system to its rest state. u and v, 

are the dependent variables. The initial and the 

boundary conditions are 

    0.00,0,  xvxu , 

 
2

,0
I

tux  ,   00120 ., tu
x

, for .0t  

Here I is the constant current applied at the left 

end of the nerve and b is the reciprocal of the time 

scale associated with the nerve recovery. The values 

of the parameters a, b, c, and I are taken as 0.139, 

0.008, 2.540, and 0.450, respectively. In this 

problem, pulses in u and v are periodically generated 

at the left boundary and these pulses evolve into 

traveling waves. 

5. Results and Discussion 

A survey of the several numerical methods used 

to solve our selected example problems is given in 

[18]. So we mostly compare our computed results 

with those presented in [18]. The example problems 

with the considered values of the program parameters 

(K and N) are not so big problems that need dozens of 

computing nodes running a large number of 

processes to solve the problems in less time. Number 

of elements K ranging from 80 to 160 and order of 
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approximating polynomials N ranging from 4 to 8 are 

quite sufficient to demonstrate the application of high 

order nodal DGM for our example problems. Using 

up to 8 processes, we are able to obtain sufficiently 

accurate solutions in few minutes. Therefore, the 

current parallel implementation is indented for stand-

alone PCs having a number of processing cores, or 

for small clusters of PCs.  

We solve our example problem of moving 

unsteady flame front using the parallel nodal DGM 

code from time t = 0.0 to t = 15.0 in the restricted 

domain  = (40.0, 20.0) with number of elements K 

= 80. To demonstrate the effect of increasing the 

order (N) of approximating polynomials, we solve the 

same example problem with N = 4, 6, 8 and 10, 

keeping the number of elements K fixed at 80, as 

shown in Fig. 1. Fig. 1(a-d) gives a comparison of 

respective resulting profiles of temperature T and 

chemical species Y at selected values of t. At N = 6 

and higher values, these results are in good 

agreement with those presented in [17,18]. In the 

profile of temperature T, there exists a peak which is 

better resolved at higher values of N. 

Next, we perform a scalability analysis to 

analyze the variation of speedup with respect to 

increments in the number of processes on our 

available parallel systems, i.e., SYSTEM-1 and 

SYSTEM-2. Fig. 2(a-b) shows the scalability pattern 

of speedup for our example problem of moving flame 

front, solved with K = 160 and N = 8. On SYSTEM-

1, which is an 8-core machine, the parallel code 

exhibits better efficiency when the number of 

processes (or cores) is less than 8. With the increase 

in the number of processes, more number of cores is 

used. This decreases the parallel efficiency, mainly 

due to the increase in memory bandwidth contention. 

With 8 processes on the 8 CPU cores, we observe a 

speed up of 5.68 (71% parallel efficiency).

 

 

Fig. 1(a):  Temperature and density profiles for the moving flame front problem with K = 80 and N = 4 

 

Fig. 1(b):  Temperature and density profiles for the moving flame front problem with K = 80 and N = 6 
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Fig. 1(c):  Temperature and density profiles for the moving flame front problem with K = 80 and N = 8 

 

Fig. 1(d):  Temperature and density profiles for the moving flame front problem with K = 80 and N = 10 

 

           

 (a) (b) 

Fig. 2:  Parallel scalability with the moving flame front problem, (a) on SYSTEM-1, (b) on SYSTEM-2 
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Fig. 3:  Temperature and density profiles for Dwyer-Sanders model problem with K = 200 and N = 8 

(a)                      

(b)                  

Fig. 4:  Parallel scalability with Dwyer-Sanders model problem, (a) on SYSTEM-1, (b) on SYSTEM-2 
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On SYSTEM-2, which is an 8-node cluster, 1 

process per node is mapped. The parallel code 

exhibits comparatively lower parallel efficiency 

(59%). On the cluster, the main parallel overhead is 

due to the network latency which is because of 

communication occurring among the processes 

through Ethernet. For our test case this overhead is 

vital because of very low computation to 

communication ratio. The computation to 

communication ratio increases as we increase the 

number  of  elements  per  process,  by  using  a  finer 

grid. 

For the second numerical example, that is based 

on Dwyer-Sanders flame propagation model, we 

compute the results using the parallel nodal 

discontinuous Galerkin code with number of 

elements K = 200 and polynomial order N = 8. Fig. 3 

shows the obtained profiles of temperature T and 

density Y at selected values of time t. These results 

are in good agreement with those presented in [17-

20]. For this test case, we observe similar scalability 

pattern of the parallel code as we obtained with the 

first example problem on our parallel systems, 

SYSTEM-1 and SYSTEM-2 with number of 

elements K = 160 and polynomial order N = 8. The 

comparison is presented in Fig. 4(a-b). 

The results for the third numerical example, 

which is based on Fitzhugh-Nagumo equations of 

Mathematical Biology, are computed with 

polynomial order N = 8 using 4 MPI processes on a 

quadcore CPU based system. The obtained profiles of 

dependent variables u and v are shown in Fig. 5(a-e) 

for number of elements K = 80. The results are in 

good agreement with those presented in [18,19] and 

especially in [16], which used a moving finite 

element method with 3rd order approximations in 

each element. The moving finite element method was 

introduced in [31,32]. It was used for solving time-

dependent partial differential equation in 1D. The 

CPU time to accomplish the integration was 7.1 

hours in [16], while in our case we obtained the nodal 

discontinuous Galerkin method based solution, with 

four processes on the quadcore CPU, in about 17 

minutes with number of elements K = 120, hence, 

achieved a remarkable time efficiency. 

 

 

(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Fig. 5: Solution profiles of Fitzhugh-Nagumo 

equations with K = 80 and N = 8, (a) at t = 

40, (b) at t = 80, (c) at t = 120, (d) at t = 160, 

(e) at t = 200 

6. Conclusions 

We developed a parallel discontinuous Galerkin 

code for solving a number of 1D reacting flow 

problems. Unlike other finite element schemes which 

are mostly adaptive or moving grid methods for 

resolving the sharp moving fronts in reacting flows, 

we obtained the solution by „high order‟ polynomial 

approximation locally within each element which is 

the main feature of a discontinuous Galerkin method. 

We applied the nodal discontinuous Galerkin method 

with approximating polynomials of orders up to 10 to 

solve our example problems. We also investigated 

the performance and scalability of our code on a 

number of parallel computing systems. 

Benchmarking of our current implementation on the 

two systems considered indicates that the upper 

bound on the performance of this parallel code is due 

to the network overheads, not due to the memory 

bandwidth. The current parallel implementation of 

the nodal discontinuous Galerkin method is intended 

for stand-alone PCs having a large number of 

processing cores, and for small clusters of PCs. The 

successful and efficient implementation of the high 

order discontinuous Galerkin method (DGM) in the 

present work is encouraging to consider it for large 

scale reacting flow simulations. 
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