
Pak. J. Engg. & Appl. Sci. Vol. 13, July, 2013 (p. 134-147)

134

Towards Application of a Parallel, High Order Discontinuous Galerkin

Method for Reacting Flow Simulations
Amjad Ali

1
, Ahmad Hassan

1
, Khalid S. Syed

1
, Muhammad Ishaq

1
 and Idrees Ahmad

2

1. CASPAM, Bahauddin Zakariya University, Multan (60800), Pakistan. Email: amjadali@bzu.edu.pk

2. Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad, Pakistan.

Abstract

An accurate numerical technique for the numerical simulation of 1D reacting flow problems is

implemented. The technique is based on nodal discontinuous Galerkin finite element method that

makes use of high order approximating polynomials within each element to capture the physics of

reacting flow phenomena. High performance computing is achieved through parallelization of the

computer code using MPI to run on any distributed memory parallel computing architecture. The

developed parallel code is tested on a PC with modern multicore CPUs, and on a multi-node compute

cluster made up of commodity PC hardware, having gigabit Ethernet as the interconnect. The results

presented are in good agreement with those available in the literature.

Key Words: reacting flows; nodal discontinuous Galerkin method; parallel computing; multicore

CPU

1. Introduction

Computational Fluid Dynamics (CFD) is

extremely useful and promising way to forecast or

reconstruct the behavior of certain engineering

products or physical situations through numerical

simulations. Most of the physical experiments might

be impossible to be carried out, expensive to be

performed or less insight providing. The simulations,

on the other hand, are more likely to be carried out,

lesser expensive to be performed and provide more

insight and comprehensive information. CFD

simulations reduce the number of required

experiments during development and testing of new

products. For example, the number of wind-tunnel

hours required for the development of Boeing-747

aircraft (in 1963) was reduced by a factor of 10 for

Boeing-767 (in 1982) and was further reduced by

another factor of 10 for Boeing-777 (in 1998). The

main enabling factors for so impressive

developments in CFD during past three decades are

enormous growth in computing capabilities, steep

decline in computing cost and development of more

and more efficient algorithms [1].

In CFD, the simulation of flows often requires

solving partial differential equation (PDEs)

numerically. Common methods used for numerical

solution of PDEs are Finite Difference Methods

(FDM), Finite Volume Methods (FVM) and Finite

Element Methods (FEM). Yet there is another class

of methods, Discontinuous Galerkin Finite Element

Methods (DG-FEM or simply DGM), also referred to

as hybrid FEM/FDM/FVM methods. DGM combines

a number of benefits and overcomes a number of

weaknesses of finite element and finite volume

methods. In DGM, the solution is approximated by

high order polynomials within each cell (like in

FEM) but without the global continuity requirement,

while the physics of wave propagation is accounted

for by using some numerical flux scheme (like in

FVM) to cope with discontinuous representation of

the solution at element interfaces. In principle, the

accuracy in DGM is achieved by the high order local

polynomial approximations and the stability is

achieved by careful selection of flux scheme.

Absence of global continuity requirement of the

solution, i.e., independency of polynomial

approximation in an element from that of other

elements, makes DGM very compact. This feature, in

conjunction with some other desired numerical

properties, makes DGM very flexible so that it allows

easy handling of a vast range of cell types and mesh

topologies. It allows the use of adaptive techniques

(like h- and p- refinements). It also supports easy

implementation of certain strategies for solver

Towards Application of a Parallel, High Order Discontinuous Galerkin Method for Reacting Flow Simulations

 135

acceleration, in both serial and parallel programming

environments. A comparison of generic properties of

these methods is given in Table 1, adapted from [2].

In Table 1, „Y‟ means that the method is capable, „N‟

means that the method has shortcoming, and „Q‟

means that the method is capable but with

modification and is not a preferred choice.

Discontinuous Galerkin Method has recently

gained popularity for the solution of systems of

conservation laws on unstructured grids. However

several issues of DGM need to be addressed. These

issues include high CPU/memory requirements

(compared to FVM or High Order FDM) because of

increase in number of degrees of freedom, and

oscillations in presence of strong discontinuities.

DGM is also low tolerant to its under-resolved

features. The challenge is to make DG competitive,

or at least compliment, to the well established

schemes for real-world problems. Some accounts of

history and developments of DGMs can be found in

[2,3]. Some significant landmark DGM formulations

are [4-14].

Table 1: A comparison of spatial discretization

schemes

FDM FVM FEM DGM

Complex Geometry N Y Y Y

Higher Order

Accuracy and

Adaptivity

Y N Y Y

Compactness N N Y Y

Explicit Semi

Discrete Form
Y Y N Y

Conservation Laws Y Y Q Y

Elliptic Problems Y Q Y Q

A basic problem in CFD is to develop accurate

and efficient solvers for the simulation of reacting

flows. Reacting flows are characterized by the

presence of multiple scales, including reaction fronts,

boundary layers and shocks. It is possible for the

reaction front to move at some velocity other than the

velocity of the fluid and the moving fronts may be

sharp, as well. The numerical method should be

capable of accurately resolving such flows. The

numerical methods mostly used for such problems

are adaptive, especially with moving finite elements

or moving grid [15-20]. In the present paper, instead

of using some adaptive technique, the objective of

our work is to apply DGM with high order

approximating polynomials locally within each

element to perform numerical simulation of reacting

flows. We solve three selected reacting flow

problems, two from flame propagation in combustion

and one from mathematical biology, using a

discontinuous Galerkin method that is based on so-

called „nodal‟ approach [2]. Section 2 of this paper

presents the nodal discontinuous Galerkin method.

Our next contribution in this paper is to develop

a parallel solution of our serial nodal discontinuous

Galerkin code to run on a parallel computing

architecture. We also perform scalability analysis of

our parallel code on a number of parallel computing

machines, including a PC with 8 processing cores,

and a cluster of PCs. For parallelization, we use

Message Passing Interface (MPI) library [21]. MPI is

a scalable parallel programming standard specially

developed for distributed memory parallel machines.

It has evolved as a de facto industry standard for

message passing programming. A number of MPI

implementations have been created, which include

both open-source (free) and commercial ones.

Keeping in view our problem sizes and the algorithm,

we tested our parallel code on a standalone PC with

multicore CPUs and on a small multi node cluster

PCs. Clusters of PCs are composed of commonly

available hardware components [22]. Therefore they

are experienced as a very cost effective solution for

parallel computing. They are also sometimes called

Beowulf clusters. Section 3 describes the

parallelization platforms, software‟s and strategies

used in the present work. Section 4 lists our selected

example problems and Section 5 consists of results

and discussion. Section 6 gives the conclusions.

2. The Nodal Discontinuous Galerkin
Scheme for 1D Diffusion Equations

In the current work, the nodal version of

discontinuous Galerkin finite element method is used,

as described in [2]. The governing equations of

reacting flow problems considered in this study

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 136

constitute systems of 1D diffusion equations. Here

we give DGM formulation of a general 1D diffusion

equation with stiff source term that can be used for

high order discretization of 1D diffusion equations.

This equation can be expressed as,

   guuau
xxt

 ,  RLx , (1)

For approximating the solution of PDEs

involving high order spatial derivatives by DGM,

first rewrite the high order spatial derivative as a

system of first order ordinary differential equations

(ODEs). For this, we introduce a new variable,

  ,uuaq x (2)

and rewrite (1) as follows:

    

 










.0uuaq

ugquau

x

xt
 (3)

For the discretization of the above system with the

DGM usually called Local DGM for (1), we divide

the domain  into K disjoint, non-overlapping

elements, D
k
, such that,

,
1

k
K

k

D


 (4)

where denotes the direct sum. We define a

global space Vh for the test functions as,

k

h

K

k

h VV 



1

 (5)

where k

h
V is a local space generated by Nth degree

polynomials Npi
i

,,,, 21 , defined on the

elements, D
k
. 1 NN

p
 is the number of grid points

in D
k
 used for constructing interpolating polynomials

i. We seek to obtain an approximation),(k
h

k
h qu to

),(qu such that both k

h

k

h
qu and belong to the finite

dimensional space, k

h
V . Now multiplying (3) with

arbitrary test function n and integrating over the

element D
k
, we get, after performing integration by

parts,

   

     ,ˆ 







 kD

n

k

h

kD

n

k

h

kD

nx

k

h

kD

n

k

ht

dxugdxqan

dxqadxu





 (6)

 

   ,ˆ 0







 kD

n

k

h

kD

nx

k

h

kD

n

k

h

dxuan

dxaudxq





 (7)

where D
k
 is the boundary of D

k
, and))(ˆ(

k

h
qan  and

))(ˆ(
k

h
uan  are fluxes across the element in the unit

normal direction, n̂ , to the boundary. These fluxes are

replaced by suitably chosen numerical fluxes denote

by))(ˆ(
 k

h
qan and))(ˆ(

 k

h
uan in (6) and (7) and

lead to the following weak form of (3) on each

element, D
k
:

      

  ,ˆ 0




 











kD

n

k

h

kD

n

k

hnx

k

hn

k

ht

dxqan

dxugqau





 (8)

  

  .ˆ 0




 











kD

n

k

h

kD

nx

k

hn

k

h

dxuan

dxauq





 (9)

The above equations give DGM formulation of

(3) in weak form. It requires test functions to be

smooth. In situations where non-smooth test

functions are to be used, we may employ strong form

of DGM formulation which is obtained by integrating

by parts of (8) and (9) once again:

    

    ,ˆ 0




 











kD

n

k

h

k

h

kD

n

k

h

k

hx

k

ht

dxqaqan

dxugqau





 (10)

 

    .ˆ 0




 











kD

n

k

h

k

h

kD

n

k

hx

k

h

dxuauan

dxuaq





 (11)

In the nodal implementation of DGM, k

h

k

h
qu , and

the source term  k

h
ug represented by,

Towards Application of a Parallel, High Order Discontinuous Galerkin Method for Reacting Flow Simulations

 137

 

 

 

 
   ,

,

,

,

,
x

q

u
x

txq

txu

txq

txu
k

i

Np

i
k

i

k

ik

i

Np

i
i

k

h

i

k

h

k

h

k

h  





























11

 (12)

         ,, xgxtxgugug k

i

Np

i

k

i

k

i

Np

i

i

k

h

k

h

k

h

k

h
 




11

 (13)

where  xk

i
 are N-th order Lagrange polynomials

on kD and form basis of k

h
V . In present work we

employ strong form given by (10) and (11). Use of

(12) and (13) in (10) and (11) leads to the following

system of differential algebraic equations,

      ,ˆ
~











 



kD

kk

h

k

h

k

h

kk

h

k

hk

dxxqaqaMS

td

d
M

Lngq

u

 (14)

      ,ˆ









 

kD

kk

h

k

h

k

h

k

h

k dxxuauaSM Lnuq (15)

Where


kD

k

j

k

i

k

ij
dxM  (16)

is the mass matrix,

 

  















k

k

D

k

jx

k

iij

D

k

jx

k

iij

dxaS

dxaS




~

 (17)

are the stiffness matrices,  Tk

Np

kk

h
uu ,,

1
u ,

 Tk

Np

kk

h
qq ,,

1
q are the solution vectors,

 Tk

Np

kk

h
gg ,,

1
g is a vector of values of source term

at the known value and  Tk

Np

kk

h
 ,,

1
L is a vector of

basis functions. In this work we consider a as

constant so that S and S
~

are the same.

Because of discontinuous nature of the

discretization scheme we do not need to assemble

global system. Rather the above equations are solved

independently on each element. Therefore, both sides

of (14) and (15) can Left-multiplied by inverse of M
k
.

The resulting system of ODEs is solved by the low-

storage five stage fourth-order explicit Runge Kutta

method [23]. For stable evaluation of the high order

polynomials in the implementation of nodal DGM,

the Np nodes in the element are chosen to be the

zeros of    
iN

rxP
dx

d
x21 , in the reference element

[1,1], where  xP
N

 is the Legendre polynomial of

order N. These are also known as Legendre-Gauss-

Lobatto (LGL) nodes.

To compute the integrals in the expressions for

the mass matrix M and the stiffness matrix S, the

integrals are transformed into reference element

[1,1], and then use the relation

VL(r) = P(r) (18)

and the orthonormality of Legendre polynomials to

compute M and S as,

M = (VV
T
)
1

 and S = M(VrV
1

), (19)

as given in [2]. Here P(r) = [P0(r), P1(r), P2(r), … ,

PN(r)]
T
 is the vector of Legendre polynomials of

order upto N, V is the vendermonde matrix defined

as,

Vij = Pj1(ri), (20)

and Vr is the matrix whose entries are the derivatives

of the Legender polynomials at nodal points, i.e.,

 
ir

j

jir
dx

dP
V 

,
 (21)

These representations enable formulation of

operators M and S without integrals, due to

orthonormality of Legendre polynomials; hence a

quadrature free implementation of nodal DGM is

achieved, as in [24].

3. Parallel Solution

Numerical simulations of flows greatly rely on

high performance computing (HPC). Perhaps the

most effective way of achieving HPC is the parallel

computing. Clusters of PCs may offer the most cost

effective solution to fulfill the need of high

performance parallel computing capabilities for

numerical simulations. Clusters compliments rather

than competes with the more sophisticated parallel

computing architectures. Because of the cost

effectiveness, 414 HPC machines out of top 500

known HPC machines as of November 2010 are

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 138

clusters at the World level and they are having

around 55.6% of the total number of CPUs used in all

the top 500 HPC machines, as mentioned at [25].

Introduction and so rapid advancements in

multicore CPU technology have given substantial

acceptance of these as another parallel computing

platform. PCs with 1-4 CPUs, with each CPU having

1-12 are quite common these days. Thus such PCs

can run 1-48 processes in parallel, accordingly.

However, getting respective parallel performance

with such machines depends strongly on the

algorithm and the program design. Infact, multicore

CPUs are appearing to be the one on which the

biggest supercomputing machines are relying by

considering them as building blocks. However in

such machines sufficiently fast memory hierarchies

and interconnect fabrics and I/O systems would be

necessary for acceptable parallel efficiencies.

Recently a more advanced and extremely fast,

but under-developing and tricky, way of computing is

realized that make use of graphical processing units

(GPUs) for explicit parallel computations. With a

GPU installed in a computer 10 time faster speed can

be achieved, at least in theory. The locality of

memory accesses (due to compactness of DGM) and

higher order nature of DGM makes it suitable to be

implemented on off-the-shelf, massively parallel

graphics processors (GPUs), as demonstrated in [26].

We use following systems (each system with

healthy size of DDR2 RAM with 800MHz or higher

speed) to run our parallel codes:

SYSTEM-1: It is a PC having two Xeon-5520

(8MB L2 Cache, 2.26 GHz clock speed, 5.86 GT/sec

QPI) quadcore processors (having code name

Nehalem/Gainestown). Thus it has 8 CPU cores and

is able to run up to 8 processes in parallel. The

QuickPath Interconnect (QPI) technology has

recently been introduced by Intel, replacing the

legacy Front Side Bus (FSB) technology, to help in

removing certain performance bottlenecks, including

the starvation of memory bandwidth, quite commonly

experienced on the multi core processors. Because of

its efficient memory subsystem based on QPI and a

turbo memory controller, the Nehalem/Gainestown

processor is experienced to be faster than FSB based

processors from Intel for the codes, like most CFD

codes, whose performance is often bounded above by

the memory bandwidth.

SYSTEM-2: It is an 8-node cluster, with each

node having two Xeon-5140 (4MB L2 Cache, 2.33

GHz clock speed, 1333 MHz FSB) dualcore

processors (having code name Woodcrest). Thus it

has 32 CPU cores and is able to run up to 32

processes in parallel. The nodes in the cluster are

interconnected with Gigabit (1000baseT) Ethernet

switch for inter-processor communication. For the

testing purposes, we use this system with not more

than one process mapped on each node. This helps in

reducing the memory contention that commonly

arises when more than one process within a node

simultaneously access the memory. Moreover this

also helps in reducing network interface contention

that arises when the network bandwidth available to

one node is shared among many processes on that

node.

The operating system installed for these systems

is Linux. The software setups include 64bit-compilers

and MPICH library [21], which is an open source

MPI implementation. All the floating point

operations are performed in double precision.

Discontinuous Galerkin method is highly

parallelizable, mainly because of compact or local

nature of the discretization. The polynomial solution

in each cell is independent of the solutions in other

cells, thus the inter-element communication is

required only with adjacent cells, for flux

computations at the cell-interface, which is shared

between two adjacent cells. Thus the method favors

the formulation of very compact numerical schemes.

In a parallel code of DGM the computational domain

is partitioned among the available processes. The

communication between any two processes is

required only if one process has some cells whose

one or more edges lie on the so called „partition

boundary‟, such that the adjacent cell belongs to the

other process.

3.1 The Strategy

In this work, only one MPI process is mapped to

one processing core, so that the terms „process‟,

„processor‟ and „CPU core‟ are interchangeable. The

master/head process generates mesh and reads in the

Towards Application of a Parallel, High Order Discontinuous Galerkin Method for Reacting Flow Simulations

 139

parameters values. Then after domain decomposition

it sends the respective parts of the mesh to other

processes available, and it broadcasts the parameters

values to all other processes. After that each process

constructs operators locally. Although it was possible

that master process might construct these operators

and broadcast to others; for better performance we

used the other way. Then each process constructs

various arrays of its neighborhood information. Then

each process computes initial solution on its mesh

part. The low storage five stage fourth order explicit

Runge-Kutta (RK) method [23] is used for time

integration. At each stage of the RK method, the right

hand side (RHS) of the equation, obtained through

local discretization of the problem using nodal DGM,

is computed. The communication of values at inter-

processes partition boundary points is carried out in

the subroutine that computes the RHS on each

element. The subroutine also implements boundary

conditions and some numerical flux scheme. In this

work, we used central flux scheme for simplicity [2].

Necessary barrier points are inserted in the parallel

code to have synchronization among all the

processes.

A parallel code has two operational parts, i.e.,

computation and communication. In our parallel code

we overlapped communication with computation, as

much as could be permitted by the algorithm. This

can be accomplished by initiating non-blocking

sending and receiving operations in such a way that

the computations remain continue in the meantime

the communication is being carried out. Such a

technique may be called as hiding communication

behind computation [13,27].

3.2 Parallel performance

For a given problem size, the performance of a

parallel code on a distributed memory parallel

machine consisting of inter-connected processing

nodes depends, in general, on many factors including,

 Number and frequencies of CPUs

 Memory characteristics (capacity, bandwidth etc)

 Bandwidth and latency of the interconnect

 Communication to computation ratio.

A number of metrics are available in literature

and commonly used to quantify performance of

parallel programs. These metrics include, “total

execution time”, “relative speedup”, and “relative

efficiency”. In this work, the “relative speedup” and

“relative efficiency” will simply be called “speedup”

and “efficiency”, respectively. Execution time

consists of computation and communication time,

both. It is “the elapsed wall clock time from the start

of execution of first process of a parallel program to

the end of execution of its last process”. Relative

speedup, , of a parallel program is “the ratio of

elapsed time, 1, taken by one process to solve a

problem to the elapsed time, p, taken by n processes”

to solve the same problem, i.e.,

 = 1/n (22)

The relative efficiency, , is defined as

 = /n. (23)

In general, speedup is observed less than n and

efficiency is observed between 0 and 1. In an ideal

case,

p = 1/n,  = n and  = 1. (24)

Sometimes so called “super-linear speedup” is

observed where speedup is greater than n. This

phenomenon is caused by the cache efficiency with

smaller data sizes on the n processors as compare to

the single processor case. Scalability is another

characteristic of parallel programs that measure how

much efficiency is sustained when the processing

resources and the problem size are both increased in

proportion to each other [28]. Scalability of our

parallel program is analyzed in Section 5. The

scalability analysis performed reflects that how the

speedup of the program increases with an increase in

the number of processes for a given problem size.

4. Numerical Examples

4.1 A Moving Unsteady Flame Front

Our first numerical example is a benchmark

problem for numerical methods in flame propagation

proposed in [29]. Its equations are given by,

 YTfTT xxt , ,

 YTfY
Le

Y xxt ,
1

 ,),,(),,( 0tx

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 140

where  
 
 
















T

T
Y

Le
YTf

11

1
exp

2
,

2




.

Here),,(txTT  temperature, and

),,(txYY  chemical species, are the dependent

variables. Moreover, the Lewis number, Le = 2.0, the

non-dimensional activation energy,  = 20 and for the

non-dimensional heat release  = 0.8. The initial and

the boundary conditions are,

 
 










0for0.1

0forexp
0,

x

xx
xT

 
 










0for0.0

0forexp0.1
0,

x

xxLe
xY

  0.0,  tT ,   0.0,  tTx for t > 0

  0.1,  tY ,   0.0,  tYx for t > 0.

The solution of this problem is an oscillating

flame that accelerates positively and negatively in

cycles. Only high skilled algorithms have been able

to determine the amplitude and frequency of the

flame oscillations, for example in [17,18].

4.2 Dwyer-Sanders Flame Propagation
Model

Our second numerical example is the one-

dimensional flame propagation problem proposed in

[30]. The model is a reaction-diffusion system, given

by,

 TRYYY xxt 

 TRYTT xxt  ,),,(10x

where   






 


T
TR

4
exp1052.3 6 .

In this system,),(txTT  and),(txYY 

represent temperature and density of the chemical

specie, respectively. The initial and the boundary

conditions are,

  0.10, xY ,   2.00, xT .

  0.0,0 tYx ,   0.0,0 tTx ,   0.0,1 tY

 













....

.
.

.
,

006000020for21

000200for
00020

20
1

t

t
t

tT

A number of fundamental characteristics of

flame propagation are simulated in this problem. The

heat source that generates a steep flame front is

modeled by the time-dependent forcing function R.

When the temperature reaches its maximum, the

flame front starts to propagate from the right to left at

almost constant velocity around 150. The flame front

reaches nearly the left boundary at t = 0.006.

4.3 Fitzhugh-Nagumo Equations of
Mathematical Biology

Our third numerical example is a problem based

on famous Fitzhugh-Nagumo Equations of

Mathematical Biology [16,18,19]. These are one-

dimensional reaction-diffusion equations, providing a

conceptual model of ionic current flow across a semi-

infinite nerve membrane, and are given by,

   vaauuuu
xxt

 1 ,

 vcubv
t

 ,).,(),,( 01200 tx

Here u = u(x,t) represents electro-chemical

potential, and v = v(x,t) represents recovery variable

for returning of the system to its rest state. u and v,

are the dependent variables. The initial and the

boundary conditions are

    0.00,0,  xvxu ,

 
2

,0
I

tux  ,   00120 ., tu
x

, for .0t

Here I is the constant current applied at the left

end of the nerve and b is the reciprocal of the time

scale associated with the nerve recovery. The values

of the parameters a, b, c, and I are taken as 0.139,

0.008, 2.540, and 0.450, respectively. In this

problem, pulses in u and v are periodically generated

at the left boundary and these pulses evolve into

traveling waves.

5. Results and Discussion

A survey of the several numerical methods used

to solve our selected example problems is given in

[18]. So we mostly compare our computed results

with those presented in [18]. The example problems

with the considered values of the program parameters

(K and N) are not so big problems that need dozens of

computing nodes running a large number of

processes to solve the problems in less time. Number

of elements K ranging from 80 to 160 and order of

Towards Application of a Parallel, High Order Discontinuous Galerkin Method for Reacting Flow Simulations

 141

approximating polynomials N ranging from 4 to 8 are

quite sufficient to demonstrate the application of high

order nodal DGM for our example problems. Using

up to 8 processes, we are able to obtain sufficiently

accurate solutions in few minutes. Therefore, the

current parallel implementation is indented for stand-

alone PCs having a number of processing cores, or

for small clusters of PCs.

We solve our example problem of moving

unsteady flame front using the parallel nodal DGM

code from time t = 0.0 to t = 15.0 in the restricted

domain  = (40.0, 20.0) with number of elements K

= 80. To demonstrate the effect of increasing the

order (N) of approximating polynomials, we solve the

same example problem with N = 4, 6, 8 and 10,

keeping the number of elements K fixed at 80, as

shown in Fig. 1. Fig. 1(a-d) gives a comparison of

respective resulting profiles of temperature T and

chemical species Y at selected values of t. At N = 6

and higher values, these results are in good

agreement with those presented in [17,18]. In the

profile of temperature T, there exists a peak which is

better resolved at higher values of N.

Next, we perform a scalability analysis to

analyze the variation of speedup with respect to

increments in the number of processes on our

available parallel systems, i.e., SYSTEM-1 and

SYSTEM-2. Fig. 2(a-b) shows the scalability pattern

of speedup for our example problem of moving flame

front, solved with K = 160 and N = 8. On SYSTEM-

1, which is an 8-core machine, the parallel code

exhibits better efficiency when the number of

processes (or cores) is less than 8. With the increase

in the number of processes, more number of cores is

used. This decreases the parallel efficiency, mainly

due to the increase in memory bandwidth contention.

With 8 processes on the 8 CPU cores, we observe a

speed up of 5.68 (71% parallel efficiency).

Fig. 1(a): Temperature and density profiles for the moving flame front problem with K = 80 and N = 4

Fig. 1(b): Temperature and density profiles for the moving flame front problem with K = 80 and N = 6

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 142

Fig. 1(c): Temperature and density profiles for the moving flame front problem with K = 80 and N = 8

Fig. 1(d): Temperature and density profiles for the moving flame front problem with K = 80 and N = 10

 (a) (b)

Fig. 2: Parallel scalability with the moving flame front problem, (a) on SYSTEM-1, (b) on SYSTEM-2

Towards Application of a Parallel, High Order Discontinuous Galerkin Method for Reacting Flow Simulations

 143

Fig. 3: Temperature and density profiles for Dwyer-Sanders model problem with K = 200 and N = 8

(a)

(b)

Fig. 4: Parallel scalability with Dwyer-Sanders model problem, (a) on SYSTEM-1, (b) on SYSTEM-2

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 144

On SYSTEM-2, which is an 8-node cluster, 1

process per node is mapped. The parallel code

exhibits comparatively lower parallel efficiency

(59%). On the cluster, the main parallel overhead is

due to the network latency which is because of

communication occurring among the processes

through Ethernet. For our test case this overhead is

vital because of very low computation to

communication ratio. The computation to

communication ratio increases as we increase the

number of elements per process, by using a finer

grid.

For the second numerical example, that is based

on Dwyer-Sanders flame propagation model, we

compute the results using the parallel nodal

discontinuous Galerkin code with number of

elements K = 200 and polynomial order N = 8. Fig. 3

shows the obtained profiles of temperature T and

density Y at selected values of time t. These results

are in good agreement with those presented in [17-

20]. For this test case, we observe similar scalability

pattern of the parallel code as we obtained with the

first example problem on our parallel systems,

SYSTEM-1 and SYSTEM-2 with number of

elements K = 160 and polynomial order N = 8. The

comparison is presented in Fig. 4(a-b).

The results for the third numerical example,

which is based on Fitzhugh-Nagumo equations of

Mathematical Biology, are computed with

polynomial order N = 8 using 4 MPI processes on a

quadcore CPU based system. The obtained profiles of

dependent variables u and v are shown in Fig. 5(a-e)

for number of elements K = 80. The results are in

good agreement with those presented in [18,19] and

especially in [16], which used a moving finite

element method with 3rd order approximations in

each element. The moving finite element method was

introduced in [31,32]. It was used for solving time-

dependent partial differential equation in 1D. The

CPU time to accomplish the integration was 7.1

hours in [16], while in our case we obtained the nodal

discontinuous Galerkin method based solution, with

four processes on the quadcore CPU, in about 17

minutes with number of elements K = 120, hence,

achieved a remarkable time efficiency.

(a)

(b)

(c)

(d)

Towards Application of a Parallel, High Order Discontinuous Galerkin Method for Reacting Flow Simulations

 145

(e)

Fig. 5: Solution profiles of Fitzhugh-Nagumo

equations with K = 80 and N = 8, (a) at t =

40, (b) at t = 80, (c) at t = 120, (d) at t = 160,

(e) at t = 200

6. Conclusions

We developed a parallel discontinuous Galerkin

code for solving a number of 1D reacting flow

problems. Unlike other finite element schemes which

are mostly adaptive or moving grid methods for

resolving the sharp moving fronts in reacting flows,

we obtained the solution by „high order‟ polynomial

approximation locally within each element which is

the main feature of a discontinuous Galerkin method.

We applied the nodal discontinuous Galerkin method

with approximating polynomials of orders up to 10 to

solve our example problems. We also investigated

the performance and scalability of our code on a

number of parallel computing systems.

Benchmarking of our current implementation on the

two systems considered indicates that the upper

bound on the performance of this parallel code is due

to the network overheads, not due to the memory

bandwidth. The current parallel implementation of

the nodal discontinuous Galerkin method is intended

for stand-alone PCs having a large number of

processing cores, and for small clusters of PCs. The

successful and efficient implementation of the high

order discontinuous Galerkin method (DGM) in the

present work is encouraging to consider it for large

scale reacting flow simulations.

7. Acknowledgements

We are thankful to Prof. Dr. Amanullah Khan at

Institute of Computing, Bahauddin Zakariya

University, Multan and Mr. Muhammad Ali Ismail at

Department of Computer and Information System

Engineering, NED University, Karachi for their

valuable support.

8 References

[1] R. Löhner; Applied Computational Fluid

Dynamics Techniques: An Introduction Based

on Finite Element Methods, John Wiley &

Sons, Chichester, (2008).

[2] J.S. Hesthaven, and T. Warburton; Nodal

Discontinuous Galerkin Method: Algorithms,

Analysis, and Applications, Springer Texts in

Applied Mathematics 54, Springer-Verlag,

New York, (2008).

[3] B. Cockburn, G.E. Karniadakis, and C.W. Shu

(Eds.); Discontinuous Galerkin Methods:

Theory, Computation, and Applications,

Lecture Notes in Computational Science and

Engineering, vol. 11. Springer-Verlag, New

York, (2000).

[4] F. Bassi, and S. Rebay; A high-order accurate

discontinuous Galerkin finite element method

for the numerical solution of the compressible

Navier–Stokes equations, Journal of

Computational Physics, 131 (1997) 267–279.

[5] B. Cockburn, and C.W. Shu; The local

discontinuous Galerkin method for time-

dependent convection–diffusion systems, SIAM

Journal on Numerical Analysis, 35 (6) (1998)

2440–2463.

[6] C.E. Baumann, and J.T. Oden, A discontinuous

hp finite element method for the Euler and the

Navier-Stokes equations, International Journal

for Numerical Methods in Fluids, 31 (1) (1999)

79–95.

[7] D.N. Arnold, F. Brezzi, B. Cockburn, and D.

Marini, Unified Analysis of discontinuous

Galerkin methods for elliptic problems, SIAM

Journal on Numerical Analysis, 39 (5) (2002)

1749–1779.

[8] F. Bassi, A. Crivellini, S. Rebay, and M.

Savini; Discontinuous Galerkin solution of the

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 146

Reynolds-averaged Navie-Stokes and k-

turbulence model equations, Computers and

Fluids, 34 (2005) 507–540.

[9] B.V. Leer, and S. Nomura; Discontinuous

Galerkin for diffusion, 17th AIAA

Computational Fluid Dynamics Conference,

AIAA-2005-5108 (2005).

[10] M. Dumbser, D.S. Balsara, E.F. Toro, and C.D.

Munz; A unified framework for the

construction of one-step finite volume and

discontinuous Galerkin schemes on

unstructured meshes, Journal of Computational

Physics, 227 (18) (2008) 8209–8253.

[11] J. Peraire, and P.O. Persson; The compact

discontinuous Galerkin (CDG) method for

elliptic problems, SIAM Journal on Scientific

Computing, 30 (4) (2008) 1806–1824.

[12] H. Luo, J.D. Baum, and R. Löhner; A

discontinuous Galerkin method based on a

Taylor basis for compressible flows on

arbitrary grids, Journal of Computational

Physics, 227 (20) (2008) 8875–8893.

[13] Amjad Ali, Hong Luo, Khalid S. Syed, and

Muhammad Ishaq; A Parallel Discontinuous

Galerkin Code for Compressible Fluid Flows

on Unstructured Grids, Journal of Engineering

and Applied Sciences, 29 (1), in press.

[14] Hong Luo, Luqing Luo, Amjad Ali, Robert

Nourgaliev, and Chunpei Cai; A Parallel,

Reconstructed Discontinuous Galerkin Method

for the Compressible Flows on Arbitrary Grids,

Communications in Computational Physics,

9(2) (2011), 363–389.

[15] I. Ahmad, and M. Berzins; MOL solvers for

hyperbolic PDEs with source terms,

Mathematics and Computer in Simulation.

56(2) (2001) 115–125.

[16] M.C. Coimbra, C. Sereno, and A. Rodrigues;

Moving finite element method: applications to

science and engineering problems, Computer

and Chemical Engineering, 28 (2004) 597–603.

[17] J. Lang, and A. Walter; A finite element

method adaptive in space and time for

nonlinear reaction-diffusion-systems, IMPACT

of Computing in Science and Engineering, 4

(1992) 269–314.

[18] J.I. Ramos; Finite element methods for one-

dimensional flame propagation problems, in:

T.J. Chung (Eds.), Numerical Modeling in

Combustion, Taylor and Francis, Washington,

DC, (1993) 3–131.

[19] J.G. Verwer, J.G. Blom, and J.M. Sanz-Serna;

An adaptive moving grid method for one-

dimensional systems of partial differential

equations, Journal of Computational Physics,

82 (2) (1989) 454–486.

[20] A.V. Wouwer, P. Saucez, W.E. Schiesser, and

S. Thompson; A MATLAB implementation of

upwind finite differences and adaptive grids in

the method of lines, Journal of Computational

and Applied Mathematics, 183 (2005) 245–258.

[21] MPICH project.

http://www.mcs.anl.gov/research/projects/mpi/ (last

accessed Jan. 10, 2010).

[22] Beowulf Project. http://www.beowulf.org

(last accessed Mar. 5, 2009).

[23] M.H. Carpenter, and C. Kennedy; Fourth-order

2N-storage Runge-Kutta schemes, Technical

Report NASA TM-109112, NASA Langley

Research Center (1994).

[24] H.L. Atkins, and C.W. Shu; Quadrature free

implementation of the discontinuous Galerkin

method for hyperbolic equations, AIAA

Journal, 36(5) (1998) 775–782.

[25] TOP500 project.

http://www.top500.org/stats/list/33/archtype (last

accessed Jun. 10, 2010)

[26] A. Klockner, T. Warburton, J. Bridge, and J.S.

Hesthaven; Nodal discontinuous Galerkin

Towards Application of a Parallel, High Order Discontinuous Galerkin Method for Reacting Flow Simulations

 147

methods on graphics processors, Journal of

Computational Physics, 228 (21) (2009) 7863–

7882.

[27] A. Baggag, H. Atkins, and D. Keyes; Parallel

implementation of the discontinuous Galerkin

method, NASA/CR-1999-209546, ICASE

Technical Report No. 99–35 (1999).

[28] Grama, A. Gupta, G. Karypis, and V. Kumar;

Introduction to Parallel Computing, Second ed.,

Pearson Education, Singapore, (2003).

[29] N. Peters, and J. Warnatz (Eds.); Numerical

methods in laminar flame propagation, Notes

on Numerical Fluid Dynamics, vol. 6, Vieweg,

Braunschweig, (1982).

[30] H.A. Dwyer, R.J. Kee, and B.R. Sanders;

Adaptive grid method for problems in fluid

mechanics and heat transfer, AIAA Journal, 18

(10) (1980) 1205–1212.

[31] C. Sereno, A.E. Rodrigues, and J. Villadsen;

The moving finite element method with

polynomial approximations of any degree,

Computer and Chemical Engineering, 15 (1)

(1991) 25–33.

[32] C. Sereno, A.E. Rodrigues, and J.

Villadsen; Solutions of partial differential

equations systems by the moving finite

element method, Computer and Chemical

Engineering, 16 (6) (1992) 583–592.

