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Abstract 

Some new Hermite-Hadamard’s inequalities for h-convex functions are proved, generalizing some 

results in [1, 3, 6] and unifying a number of known results. Some new applications for special means 

of real numbers are also deduced. 
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1. Introduction and Preliminaries 

If a function  ],[: baf  is convex, then 
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is known as the Hermite-Hadamard inequality. For 

concave function f, the above order is reversed. 

Inequality (1) is refined, extended, generalized and 

new proofs are given in [1, 2, 3, 5, 7, 8]. 

Now we present definitions, theorems and 

results that we apply in this paper. 

Definition 1. [1] Let I be an interval of real numbers. 

A function lf :  is said to be convex if for all  

lyx ,  and t  [0, 1] 

)()1()(})1({ yftxtfyttxf   

f  is said to be concave, if the above inequality is 

reversed. 

Definition 2. [4] A non-negative function 

lf :   is said to Godunova-Levin function (or 

f is said to belong to class Q(l)) 

if, f or all x, y  l and t  (0, 1) 
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It may be noted that this class contained all non-

negative monotone and non-negative convex 

functions . 

Definition 3. [2] A function ),0[),0[: f  is a 

function of P type (or that f belongs to the class P(l)) 

if, for all x, y  [0, ) and  t  [0, 1] 

  )()()1( yfxfyttxf   

Definition 4: [1, p.288] A function ),0[:f is 

said to be s-convex function in the second sense (or 

)2
SKf  if for all x, y  [0, ), t [0, 1] and s  

[0,1], the following inequality holds: 

  )))1()()1( yftxftyttxf ss   

Obviously, 1-convex function is convex. 

Definition 5 [10] Let I, J be intervals in 

J )1,0(, and let Jh :   be a non-negative 

function, 0h . A non-negative function  f:l  is 

called h-convex function (or f belongs to the class  

SX, (h, l)), if for all x, y  l  and t  (0, 1), the 

inequality 

  )()1()()()1( yfthxfthyttxf   

holds 

If the inequality is reversed then f is said to be h-

concave and in this case f belongs to the class 

SV(h,l). 

Remark 1. If h(t) = t, then all the non-negative 

convex functions belong to the class SX(h, l) and all 

non-negative concave functions belong to the class  

SV (h, l). 

If ,
1

)(
t

th   then SX(h; l) = Q(l). 

If ,1)( th  then SX(h; l)  P(l). 

If h(t) = t
s
,  where s  (0, 1), then SX (h, l)  

2
sK  

In [8] some new Hadamard-type inequalities for 

h-convex functions are discussed  by authors.  
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In [9] Sarikaya et. al. established a Hermite-

Hadamard inequality for h--convex functions in  as: 

Theorem 1. Let f SX (h, l), a, b l with a < b and 

f L[a; b]. Then 
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In this article, we obtain new inequalities of 

Hermite-Hadamard's type for functions belong to 

class SX(h, l). Finally, we have given some 

applications for special Means of real numbers. 

2. Main Results 

Lemma 1.  Let lf :   be a differenti-

able function on 
oo lbal ,;  with a<b. If 

],[ baLf  and for all ,  > 0, then 
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Proof 

Let 
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Integrating by parts and making suitable 

substitutions 
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Similarly 
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Adding (4) and (5) we obtained (3) 

Lemma 2. Let the conditions of Lemma 1 be 

satisfied, then  
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Proof.  

Integrating by parts and making suitable 

substitutions on RHS of (6), we get LHS. 

Remark 2. Setting ,0   Lemma 2 coincides 

with [3, Lemma 2.1]. 

Theorem 2.  Let lf :   be a differentiable 

function on 
ol , such that ],[ baLf   for a, b  

ol  

with a < b. If ),(|| lhSXf   and 0,  , then  
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Proof.  

By taking modulus on both sides of (3)  
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By h-convexity of  f   
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From here (7) follows. 

Corollary 1. Under the assumptions of Theorem 2 

for h(t) = t and  =   0 
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Here by applying convexity of f   on the 

middle factor we obtained [6, Theorem 2.2]. 

Theorem 3.  Let  f : l   be a differentiable function 

on l
o
, such that ],[ baLf  , for 

olba , with a<b If 

),( lhSXf
q
  with 
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Proof. 

By Hölder's inequality and h-convexity of 
q

f  : 
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Analogously 
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A combination of (8), (10) and (11) yields (9).  

Corollary 2. Under the assumptions of Theorem 

3 for h(t) = t and  =   0 
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Theorem 4  Let the assumptions of Theorem 3 be 

satisfied, then 
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Proof 

By Hölder's inequality and h-convexity of 
q

f  : 
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Analogously 
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A combination of (8), (13) and (14) yields (12). 

Corollary 3. Under the assumptions of Theorem 3 

for h(t) = t and   =   0. 
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Here by applying convexity on 
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we obtained [6, Theorem 2.3]. 

Theorem 5. Let the assumptions of Theorem 2 be 

satisfied, then 
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Proof.  

The proof is similar to proof of Theorem 2.  

Remark 3. Setting h(t) = t and  =   0. Theorem 5 

coincides with [3, Theorem 2.2]. 

Theorem 6. Let the assumptions of  Theorem 3 be 

satisfied, then 
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Proof.  

By taking modulus on both sides of (6)  
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By Hölder’s inequality and h-convexity of 
q

f  : 
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To obtain (16), using (18) in (17) 

Remark 4. Setting h(t) = t and  =   0. Theorem 5 

coincides with [1, Theorem 48]. 

Theorem  7.  Let  the assumptions of Theorem 3 be 

satisfied, then 
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Proof.  

The proof is similar to proof of Theorem 4. 

Remark 5. Setting  h(t) = t and  =   0. Theorem 7 

coincides with [3, Theorem 2.3]. 

Theorem 8. Let f : l   be a differentiable 

function on 
ol such that ],[ baLf   for 

olba , with 

.ba   If 
q

f  ),( lhSV  
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Proof. 

As ),( lhSVf
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 , therefore by Theorem 1 
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Analogously 
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A combination of (8), (13) – (14) and (21) – (22) 

yields (20) 

Corollary 4.  Under the assumptions of 

Theorem 8 with h(t) = t and  =   0 
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Remark 6. For h(t) = t
s
 where S  (0, 1], 1 and 

t
1  

with   =   0 relations (7), (9), (12), (15) – (16) and 

(19) – (20) provide the estimates of Hadamard 

differences for functions belong to )(,2 lPKs  and 

)(lQ , respectively. 

3. Applications to Some Special 
Means 

a. The arithmetic mean 

2
:),(
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 ,            a, b > 0 

b. The geometric mean 

 abbaGG  :),( ,            a, b > 0 
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c. The harmonic mean 
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d. The logarithmic mean 
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e. The identric mean 
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The n-logarithmic mean 
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It is also known that nL  is monotonically 

increasing over, n, denoting LLo   and LL 1 . 

The following inequality is well known in the 

literature:  

AlLGH   

The following propositions hold: 

Proposition 1. .Let  ba,            0 < a < b 

then for all 1q , we have 
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Proof. 

The proof follows by Theorem 3 by setting  

convex function 
xexf )(    for 

 =   0 

Proposition 2. .Let ba,            0 < a < b 

Then  for all p > 1 with 
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Proof 

The proof follows by Theorem 4 by setting 

convex function f(x)= – ln x for  

 .0   

Proposition 3. Let ba,     0 < a < b 

then for all p > 1 with 
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Proof 

The proof follows by Theorem 6 by setting 

convex function 
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Proposition 4.  Let ba,     0 < a < b 

And n    n > 2  Then for all p > 1 with 
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Proof. The proof follows by Theorem 7 by 

setting convex function 
nxxf )( , x  for  

.0   
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