
Pak. J. Engg. & Appl. Sci. Vol. 13, July, 2013 (p. 37-53)

37

A Metric Based Evaluation of Unit Tests as Specialized Clients in

Refactoring
W.Basit

1
, F. Lodhi

1
, F.Ahmed

1
and M.U. Bhatti

2

1. Department of Computer Science, National University of Computer and Emerging Sciences, Faisal Town,

Lahore, Pakistan. {wafa.basit, fakhar.lodhi, farooq.ahmed}@nu.edu.pk

2. Rmod Team, Inria Lille - Nord Europe, France. muhammad.bhatti@inria.fr

Abstract

In the context of refactoring, a unit test significantly differs from an ordinary client. A unit test is

the only safety net available to verify the impact of refactoring. In addition, tight coupling and

stronger association with the refactored class are its key discriminating characteristics. Hence, any

change in the code readily affects the behavior and quality of the test code. But if test code is adapted

and refactored along the production code, its behavior shall be preserved and quality may improve. In

this paper with the help of quality metrics, we establish the fact that unit test is a different type of

client that needs “special“ handling in the context of refactoring. We demonstrate through most

commonly used refactorings on an open source project that there is a need to enhance the existing

refactoring support for Java to include the specific adaptation mechanism for unit tests that eradicates

the effect of refactoring and also improves the internal structure of test code.

Key Words: Clients; Unit tests; Refactoring Guidelines; Adaptation; maintenance;

1. Introduction

Refactoring is defined as equivalence

transformation that does not change the external

behavior of the software system, yet it improves the

internal structure of the code [1, 28]. When it is said

“code”, there rises a misconception which has lead to

a considerable gap between the definition and the

implementation of refactoring process [13, 37-40].

Code in a program or a software system is

composed of multiple classes having various

relationships. A class may be a parent, a child, a

client or a unit test class. Each class is a client in a

system which interacts with the other classes to

perform its function. Therefore, any change in the

interface leads to change in the clients. For instance,

a refactoring performed on a public entity in the

system can affect all locations where it is accessible

and has been used, including the owner class, its

parent or subclasses, clients and test classes. Thus,

the maximum scope of the refactored entity can

encompass the whole software system or program. If

any of the affected parts in the system is not updated,

the idea of complete behavior preservation shall not

be fulfilled.

Therefore, principally the intent of refactoring

should be (1) behavior preservation (2) improvement

in the internal structure and (3) appropriate resolution

of syntactic errors caused due to refactoring, in all the

components of a software system including clients

and unit tests. We will refer to these three conditions

for refactoring as essential conditions for refactoring

in this paper. The existing state of art generally

considers these conditions for production code only

and the unit tests are not taken into account. Hence,

behavior is usually not preserved and quality of the

unit tests deteriorates.

Fowler‟s refactoring catalog [1] is a most

commonly used source for understanding different

kind of refactorings. Based on Fowler‟s guidelines

many tools for Java have been developed to support

refactoring, a few of the most commonly used are:

Eclipse, IntelliJ IDEA, JBuilder, NetBeans [23-26]

etc. Among these Eclipse and NetBeans do not fulfill

any of essential conditions of refactoring for the

clients and unit tests. Whereas, IntelliJ IDEA and

JBuilder in some cases fulfill the conditions 1 and 3

but as a consequence, the clients specifically unit

tests get infected with bad smells, a condition 2

violation.

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 38

For instance, the purpose of Move Method [1]

(see Figure 1) is to move the related behavior to its

appropriate home in the system. Principally, along

the movement of method to target, its corresponding

test code should also be moved to the target‟s test

class, by doing so, the association between the target

and test source can be removed. But the existing tools

[23-26] and guidelines [1] do not provide any support

on such adaptations therefore violate the second

essential condition by introducing the indirect test [9]

smell. Also, tools like intelliJ IDEA and JBuilder do

not make appropriate replacement of source object

with the target object in clients including unit tests.

Thus, Move Method refactoring [1] eventually

deteriorates the quality of test code if existing support

for java is used [40]. Whereas, the overall affect of

refactoring should be improved quality in all the

components of the software system including unit

tests.

The objective of this paper is to prove that unit

tests need special handling in the context of

refactoring. Hence, there is a need to highlight the

fact that there is a difference between the significance

of unit tests during original coding vs. during

refactoring. Unit tests are more critical during

refactoring process because programmers rely on unit

testing to determine whether a refactoring was

Applie d correctly and the behavior of the production

code is kept unchanged [1, 28, 29]. Proving that a

refactoring is behavior preserving is non-trivial and

therefore reliance on test suite executions is generally

considered the best choice as formal approaches are

hard to employ. But the cost and effort involved in

adapting unit tests to keep them consistent with the

refactored code is huge [29]. However, unit tests

represent a significant software effort and investment.

Therefore, it is important to keep them aligned with

the refactored code. In order to exhibit our approach,

we have used LanSimulation [35], an open source

software project, which is frequently used for

teaching the refactoring process at graduate level.

The production and test code in this project are

written in an ad hoc manner leading to various

opportunities for refactoring. Quality [33] and code

coverage metrics [36] have been used to demonstrate

the change in quality of production and test code with

and without test adaptation after refactoring. Our

analysis shows that refactoring impacts unit tests in

various different ways in comparison to an ordinary

client therefore they require additional adaptation.

The LanSimulation project refactored with another

dimension of test adaptation can significantly help

software engineering teachers to explain the complete

process of refactoring.

 After Refactoring

Before Refactoring Tools Fowler’s Ideal Approach

Fig.1 A comparative view of a subsystem after move method refactoring using different approaches

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 39

This paper is organized in 6 sections: section 2

surveys current literature on refactoring with respect

to client and unit test adaptation. In section 3, we

differentiate between a unit test and an ordinary

client. In section 4, we present the extended solution

of the LanSimulation [35]. In section 5, we lay down

our analysis using various metrics. In the end we

draw our conclusions.

2. Related Work

Refactoring process should evaluate the

software quality and maintain the consistency

between the refactored code and other software

artifacts including documentation, design documents,

tests, etc [14]. However, in practice the evolution of

code along the other artifacts is generally not taken

into account.

Unit testing is a fundamental component of the

refactoring process. Fowler [1] is of the view that

every class should have a main function that tests the

class or separate test classes should be built that work

in a framework to make testing easier, which implies

that test code cannot be separated from the

production code. Therefore any process affecting the

production code should readily adapt the associated

clients and the test code [2, 11]. Zaidman et al. are

also of the view that there is a need for tools and

methods that can help the co-evolution of source and

test code [19]. In our earlier work [13, 37-40] we

have discussed in detail the state of art and practice

that addresses or should address client and unit test

adaptation while refactoring. We summarize the

existing state of art in Table 1

Table 1 Summary of the work related to client and

test code adaptation after refactoring

Researcher Research Summary

Fowler [1] A widely adopted extensive

catalog of 68 refactoring

guidelines.

 Informal and inconsistent level of

detail.

 Do not provide guidelines on the

adaptation of unit tests. In most

cases, steps on client adaptation

are also missing.

Deursen et al

[2]

Presented a test taxonomy that

categorizes refactorings based on

their effect on test code. These are:

compatible, backwards compatible,

make backwards compatible, and

incompatible.

Counsell et al.

 [4-6]
 Assessed the test taxonomy

presented in [2].

 In our previous work [13] we

have shown that the

categorization used by [2-6] has

various loop holes.

 A refactoring dependency graph

is developed for Fowler„s

catalogue [1] and a shorter list of

compatible refactorings is

suggested by excluding all the

other refactorings that may use

those refactorings that break unit

tests.

 This approach essentially rejects

the use of many important

refactorings that are necessary for

improving the program structure.

H. C. Jiau and

J. C. Chen [8],

Pipka [11]

 Test Driven Refactoring (TDR)

[8] and Test-first Refactoring

(TFR) [11] involve adaptation of

associated unit tests before the

refactoring process takes place.

 These approaches fit well in

Extreme Programming paradigm

but are not general enough to be

used in all development

environments where testing first

is not always possible [28].

 Do not provide guidelines to

adapt test code according to the

targeted refactoring.

Soares et al.

[32]
 Soares et al. [32] propose a

technique for generating a set of

unit tests that can be useful for

detecting semantic errors after a

sequence of object-oriented

program refactorings.

 They have also evaluated the

refactoring support provided by

Eclipse, IntelliJ IDEA, JBuilder,

NetBeans. They observe that

program refactorings in IDEs are

commonly implemented in an ad

hoc way and the semantic aspects

of behavior are several times not

preserved.

Basit et al

[13,37-40]
 In [13] a mutually exclusive

categorization of refactoring

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 40

guidelines has been presented

based on the impact of refactoring

on clients and unit tests.

 In [37] the problems with

Fowler‟s refactoring catalog and

java refactoring tools including

NetBeans, Eclipse, Intellij IDEA

and JBuilder have been discussed.

These tools introduce semantic

errors in the refactored code. It

has also been shown that the

quality of the unit tests is also

deteriorated if existing approaches

for refactoring are used. In order

to prove the effectiveness of

extended refactoring guidelines,

the results from an experiment

have also been shared.

 In [38] the extended refactoring

guidelines for pull up method

have been presented. The

semantic issues that can be

introduced due to this refactoring

have been discussed through

examples.

 TAPE (Test Adaptation Plugin for

Eclipse) [39] makes easier for the

developer to organize the unit

tests along the changes in the

refactored code.

 In [40] it has been demonstrated

with the help of various examples

that unit test is a specialized client

in the context of refactoring.

Daniel et

al.[41]

Proposed an approach to check

whether refactoring tools introduce

compilation errors or not. This work

ignores detection of semantic errors

that could be introduced through

existing refactoring tools.

Tools Salient Features

TestCareAssis

tant [15]

This tool is implemented as a Java

prototype that provides automated

guidance to developers for repairing

test compilation errors caused due to

changes such as adding, removing or

changing types of parameters and

return values of methods.

ReAssert [16] ReAssert repairs assertions in test

code by traversing the failure trace.

It performs dynamic and static

analysis to suggest repairs to

developers. Again this tool does not

help in fixing the semantic errors

introduced through refactoring

CatchUp! [18] CatchUp! adapts clients of the

evolving Application Programming

Interfaces (API„s) [18]. It provides

full support for three types of

refactorings Rename Type, Moving

Java Elements and changing method

signature. This tool takes care of

only compilation errors that can

appear in the clients due to a subset

of refactorings performed on any

API, and therefore ignore the

semantic errors that could be caused

due to refactoring process.

Kaba [20] KABA [20] also includes all clients

in the refactoring process. It

guarantees preservation of behavior

for the clients either through static

analysis or all test runs (dynamic

analysis) for any input.

Reba [21] ReBA instead of adapting the clients

of the evolving API, creates

compatibility layers between new

library APIs and old clients [21].This

layer is created in the form of an

adapted version that supports both

versions of the API.

3. Unit Test: A Specialized Client

Unit testing is performed by developers to

ensure that no individual unit or a class in the system

makes it error prone. Unit tests, test code at its lowest

level of granularity which is the method level in

Object Oriented (OO) domain. But nowadays, the

meaning of the term "unit testing" seems to have

been lost. Unit tests are written by developers in

many different ways. One class may have multiple

test classes testing it or vice versa. Similarly, one

method or set of methods may be tested by multiple

methods. Several times the unit test suites are much

larger than the production code itself, so managing

test code and ensuring its completeness becomes

extremely difficult. Unit tests written in such an ad

hoc manner are usually infected with test smells [9].

It is usually said that "code is code", and so test

code that exercises a given class is usually not special

in any significant way from other clients of that class.

There is a need to correct this misconception about

code and test code in the context of refactoring. Unit

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 41

tests have a few discriminating characteristics from

that of an ordinary client.

3.1 Unit test: A safety net

In refactoring, execution of unit tests has a very

high significance. Fowler suggests several times

during the course of refactoring to “Compile and

Test” [1]. This is because after refactoring, unit tests

serve as a safety net that verifies the preservation of

software behavior. However, this is not the case with

the ordinary clients.

3.2 Tight Coupling

Unit tests are tightly coupled with the classes

they test [9]. The more coupled two components are,

the more difficult it gets to keep the two consistent.

This coupling between code and unit tests is

unavoidable and is intended to be this way.

Therefore, in this particular situation it is not

considered a bad design. But on the contrary if this

level of coupling is seen between classes in the

production code, it leads to refactoring.

3.3 Parallel hierarchy of classes

Implementing unit tests often leads to a parallel

hierarchy of classes, where every class has a

corresponding test class [12, 27]. Consequently, there

emerges an inheritance chain of corresponding unit

test classes, paralleling the classes being tested.

While it is by no means necessary, it makes things

much simpler if unit tests are set up in a parallel

hierarchy in the software under test [27]. The

inheritance relationship between test classes

maintained in parallel with production code has

several advantages [30]:

1) Reuse of test code - The inheritance relationship

between test classes for production classes that

are also related via inheritance facilitates the

reuse of individual test cases.

2) Separation of production and test code - There

are several reasons for keeping the two types of

code separate. First, the production code remains

smaller and thus less complex. Second the

executible code also remains smaller requiring

fewer resources. Finally, these two pieces are

sometimes written by different groups and the

physical separation becomes necessary.

3) Maintenance of test cases - In an iterative

development process, the tests should be easy to

apply repeatedly across the development

iterations. They must also be easy to maintain as

the production code changes. The inheritance

relationship in an object-oriented language

supports the development of code with these

chara\cteristics

4) Easy Testing: The test software is organized

around the same architecture as the production

code. The architecture of the test code never

coincides with the production code but it always

stays the same distance away. If a developer

studies the production architecture, they

automatically understand the architecture of the

test software. This organization of the test classes

makes it easier to test a method in the context of

a class and to overcome information hiding in

order to observe state.

It is known that parallel class hierarchies [1]

indicate tight coupling, duplication, a lack of

abstraction and usually result in hard to change

production code including clients. Since tight

coupling is the very purpose of unit testing (as we

want to test every public method of a specific class)

and since we usually want to test concrete

implementations instead of abstractions, parallel class

hierarchies do not seem to be a problem in the

context of unit testing.

3.4 Stronger Association

The unit test classes as defined in JUnit [22]

contain test method/s for each method to be tested.

These test methods directly call the functions they

test. The association between a class and its unit

test/s is much stronger than the client‟s association.

For instance, if a method M is moved from class A to

B, its client C starts referring to B and the association

ends. Whereas AT the unit tests of class A shall

always have a link with A.

3.5 Textual versus organizational
adaptations

We define Textual Adaptations as changes done

at the statement level inside any class in the system

affected due to refactoring. Whereas Organizational

Adaptations can be defined as transformations that

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 42

are related to changes in the structure of any class

impacted with refactoring. Generally refactoring

results in textual adaptations in both Client and unit

test classes. Rename Method [1] requires changing

the method calls both in clients and unit tests. The

organizational changes are made in unit test classes

only. Move Method [1] requires movement of test

method to the target‟s test class whereas clients

requires only replacement of object (source to target)

in the calls to the moved method.

3.6 Number of ordinary clients versus unit
test classes

There is no limitation on the number of clients

for any class in the system. But in unit testing it is

suggested to have one unit test class for each class in

the system. If any class is too big or complicated to

be tested by one class, it should be refactored.

The additional adaptations required by the unit

tests after refactoring to eliminate the problems and

smells are displayed in Table 2. In our earlier work

we have explained in detail each of the refactoring

and its impact on unit tests [13, 37-40].

Refactorings that are done at statement level or

inside a method body have no impact on the test

suites because unit tests are normally black-box tests

[12]. But refactorings involving the interface of the

class can lead to broken clients and tests if proper

adaptive actions are not taken.

1) Demonstration

In order to exhibit our approach, we have used

LanSimulation [35] an open source software that is

frequently used for teaching the refactoring process.

The production and test code in this project are

written in an ad hoc manner leading to various

opportunities for refactoring (see Figure 2).The

refactored source code using our proposed approach

is available at:

http://code.google.com/p/lansim-

refactoring/source/checkout

In order to determine the effectiveness of test

adaptation, initially we refactored the production

code but did not restructure or extend the test code

and only fixed the compiler errors in the LanTests

class. Later, the production code and test code were

evolved together. The final revision of the

LanSimulation project is modeled in Figure 3

(Production code) and Figure 4 (Test Code)

After refactoring the production code, number

of classes has visibly increased. Network class that

was acting as a god class in the system earlier, has

been cut to proper size and its functionality has been

distributed to other classes as Node, Printer,

Workstation, etc. - thus, resulting in the usual benefits

of refactoring. We present 10 revisions of the

LanSimulation project, each revision was created by

applying one or more refactorings on the production

and test code.

In Table 3 the effect of each refactoring on the

production code is described. The changes

performed on the production code ensure fulfillment

of all three essential conditions for the production

code.

Table 2 Test problems/smells introduced due to various refactorings

Type of Refactoring Test smell/ problem

introduced

Unit test adaptation required

Statement level None None

Renaming program entities Bad test name Rename test method,, test class, test package

Change in method signature Invalid tests Update references, make return types compatible

Extraction Eager tests, Missing tests Extract test method, test class, sub test class

Inlining Invalid tests Remove test method or test class exclusively testing

the inlined method or class

Pull Up/push down Test code duplication,

Indirect tests, Invalid tests

Pull up/push down test method

Moving Indirect tests, Invalid tests,

Test code duplication

Move test method, update references

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 43

Fig.2. Lan Simulation project prior to refactoring

Fig.3 Lan Simulation project (production code) after refactoring

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 44

Table 3 Effects of refactorings on production code in the LanSimulation project

R# Refactoring Applied Description of Changes in the production code

r0 - Initial commit; verified that everything is properly working; all tests verified

r1 Extract Test Class

r2 Extract Method Refactored method Network.consistentNetwork: removed long method smell

r3 Introduce Class,

Introduce Field,

Introduce Parameter

Refactored Network.requestBroadcast: a new class LogManager was introduced. This

prompted further changes including introducing a new field logManager in the

Network class that consequently led to introduction of a new parameter in Network

constructor and DefaultNetwork method. This introduction of new parameter resulted

in broken tests and client code.

r4 Introduce Method,

Introduce Field,

Introduce Parameter

Refactored Network.requestBroadcast: introduced new methods sendPacket and

receivePacket in the Node class and moved the corresponding code from the Network

class to the Node class. This required introducing a new field logManager in Node

class as well and required introducing a new parameter to Node constructor that

resulted in broken test code.

X Introduce Method,

Move Method

Refactored Network.requestWorkstationPrintsDocument:

introduced a new method transmitPrintPacket to the Node class and also moved

printDocument from Network to Node

r6 Move Method Refactored Network: moved printOn, printHtmlOn and printXmlOn from Network to

Node class

r7 Introduce Method Refactored Node.transmitPrintPacket: introduced two methods isDestinationReached

and isOriginReached and moved the necessary logic to Packet class

r8 Replace type code

with state/strategy

Remove Field,

Change Parameter,

Introduce Method,

Refactored Node: made several changes - the most important being the extraction of

subclasses Printer and Workstation through application of State pattern. Other changes

included removing the field type from Node as after extracting the subclasses, there

was no need left for keeping type information. This again resulted in changing the

Node constructor. A method equalsType was introduced.

The changes made broke the client and test code but this time the reason was the

introduction of subclasses as now the client code had to instantiate appropriate objects

of the child classes rather than the parent Node class.

r9 Change Parameter Refactored Network: change parameter in several methods that resulted in broken

client and test code

r10 Extract Class /

Interface

Refactored Printer: extracted interface Message and classes Document and its

subclasses AsciiDocument and PSDocument (through applying State Pattern) – resulted

in broken tests and client code

In contrast to the existing approaches of

refactoring, test adaptation and reorganization helps

in the fulfillment of essential condition 3 that requires

improvement in the internal structure of the test code

along production code. In Table 4, the adaptation

steps performed on unit tests and the test smell

removed due to these steps have been described.

Using the existing methods and techniques of

refactoring, the quality of unit tests is negatively

affected. Not only new test smells are introduced but

the existing ones also remain. On the contrary as

demonstrated in Table 4, a number of test smells

were removed in each revision of LanSimulation

project by applying the test adaptation mechanism

along refactoring. As we can see in Figure 4, the

responsibilities of the LanTests class have been

properly distributed to the unit tests corresponding to

each class in the production code.

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 45

Table 4 Test smells removed after performing test adaptations in the LanSimulation project

R# Broken

Tests /

Client?

Test Adaptation Test Smell Removed

R1 No Extract Test Classes: created separate test classes for the

corresponding classes in source i.e. Network, LanSimulation, Packet

and Node.

Move Test Methods

 testBasicPacket to PacketTest Class.

 testBasicNode to NodeTest Class.

 testDefaultNetworkToString(),testWorkstationPrintsDocume

nt(),

testBroadcast(),testOutput(), PreconditionViolationTestCase

and testPreconditionViolation() to NetworkTest Class.

God Test Class,

Indirect Test

r2 No There is not any specific unit test for Network.consistentNetwork

method therefore this refactoring does not lead to Extract test method

refactoring. The newly created methods are private:

 verifyRegisteredWorkstations(),

 verifyWorkstationsCount(),

 verifyPrinterExists(),

 verifyTokenRing().

Hence, no new test methods are created.

r3 Yes 1. Create unit test for LogManager

2. The elaboration of the objects of Network class and calls to

DefaultNetwork method are updated to include the new parameter.

Missing Test Class

r4 Yes 1. Create new test methods for sendPacket and receivePacket in the

Node Test class.

2. The elaboration of the objects of Node class and calls are updated

to include the new parameter.

Eager Test

r5 No 1. Create new test methods for transmitPrintPacket

2. The test method for printDocument does not exist, therefore

instead of moving, create a test method in the NodeTest class.

Missing Test

r6 No Create test methods for printOn, printHtmlOn and printXmlOn in the

NodeTest class.

Eager/ Indirect Test,

r7 No

r8 Yes 1. Create test subclasses of NodeTest class, namely PrinterTest
and WorkstationTest.

2. The elaboration of the objects of Node class .

Missing test class

r9 Yes Calls to the methods whose parameters are changed are updated

r10 Yes 1. Create test classes for Document and its subclasses

AsciiDocument and PSDocument.

Missing Test class

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 46

Fig.4 LanSimulation project (test code) after refactoring with test adaptation

2) Measurements

In this section we have provided the detailed

comparative analysis of the conventional and our

proposed approach using metrics. In Table 5 and 6

we list down metrics for size, complexity, cohesion

and duplications. These metrics have been calculated

using Sonar [33] for test code, production code and

also complete code of LanSimulation project for the

existing and the proposed approaches of refactoring.

In this section following abbreviations have been

used:

BR: Before Refactoring, ARW/OTA: After

Refactoring Without Test Adaptation, ARWTA:

After Refactoring With Test Adaptation, NCLC:

Non-Commented Lines of Code, STMTS:

Statements, CC: Cyclomatic Complexity, LCOM:

Lack of Cohesion in Methods, RFC: Response For

Class, NOM: Number of methods. Our proposed

approach for test adaptation not only focuses on

syntactic adaptation (essential condition 3) of test

code but also helps in restructuring of test code, so

that the test code resides in its right home (essential

condition 2).

Table 5 Size metrics of the LanSimulation project before/after refactoring with/without test adaptation

 Size

 Lines NCLC NOM Public API STMTS

Test Code
BR 338 281 12 12 147

ARW/OTA 343 277 12 12 150

ARWTA 605 400 33 35 206

Production

code

BR 848 481 19 28 331

ARW/OTA 1059 538 55 65 293

ARWTA 1059 538 55 65 293

Complete code
BR 1186 762 31 40 478

ARW/OTA 1402 815 67 77 443

ARWTA 1664 938 88 100 499

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 47

Table 6 Quality metrics of the LanSimulation project before/after refactoring with/without test adaptation

 Complexity

LCOM RFC

Duplications

CC CC / method Blocks Lines

Test Code BR 52 4.3 2 43 4 50

ARW/OTA 52 4.3 2 48 2 24

ARWTA 51 1.2 1.333333 133 0 0

Production

Code

BR 19.5 2.65 1.75 76 12 123

ARW/OTA 9.09 1.73 1 126 2 22

ARWTA 9.09 1.73 1 126 2 22

Complete

Code

BR 130 2.98 1.8 119 16 173

ARW/OTA 12.67 1.95 1.08 174 4 46

ARWTA 7.55 1.495 1.05 259 2 22

Fig.5(a) Comparative view of NCLC metrics

after/before refactoring with/without test

adaptation

Fig.5(b) Comparative view of NOM metric after/before

refactoring with/without test adaptation

We also focus on increasing test coverage, for

instance, on extracting a class, a test class would be

extracted or created, which would be later extended

by the developer. IntelliJ IDEA and JBuilder take

care of the first step in adaptation but the other

subprocesses are not handled by any of the java

refactoring tools [23-26].

In Figure 5(a) and 5(b) we can see that after

refactoring with test adaptation, the size of test code

has tremendously increased. This mainly happened

because we applied “Replace Type Code with

state/strategy” [1] refactoring on the LanSimulation

project, which lead to creation of many more test

classes and the test methods as well. Therefore, in

this particular case we may conclude that our

approach for test adaptation would significantly

increase the size of test code, if the test code does not

already cover the complete production code (as is the

case in the LanSimulation project). In Figures 5(a)

and 5(b) the increase in size has been demonstrated

using the aggregate values of NCLC and NOM

metrics for before/after refactoring with/without test

adaptation.

3) Complexity

The existing approaches [1, 23-26] for

refactoring ignore the quality of test code and only

focus on the quality improvement of the production

code. Complexity is another attribute of quality.

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 48

Fig.6(a) Comparative view of cc /METHOD

after/before refactoring with/without test

adaptation

Fig.6(b) Comparative view of cc after/before

refactoring with/without test adaptation

We calculated Cyclomatic Complexity [33] for

the LanSimulation project before and after

refactoring, with and without test adaptation. This

metric represents the complexity of a method and

complexity of a class. The metric value should be as

low as possible. Higher values (more than 20)

indicate that the software is hard to maintain,

understand and that the degree of readability is low

[33]. In the case of LanSimulation project the CC

values prior to refactoring were 52, 19.5 and 130 for

the test code, production code and complete code

respectively. The detailed results can be seen in

Table 6 and Figures 6 (a & b). We see that the

complexity has evidently reduced after refactoring

but the effect of test adaptation is extremely positive.

4) Duplications

If the same code structure is seen in more than

one locations in a system it is called code duplication.

It is considered a better choice to unify such code,

either through Extract Method, Extract Class, Pull

Up Method or Form Template Method [1]. In the

LanSimulation project there was considerable code

duplication (see Table 6 and Figure 7). Using the

existing approaches the code duplication was reduced

in the production code but duplication in the test code

remained. Therefore, using our proposed approach

the test code is also refactored and adapted, this lead

to decrease in number of duplicated lines from 173 to

22 after refactoring. The left over duplicate code can

be removed through further refactoring of the system.

5) Cohesion

Cohesion is a good indicator of whether a class

meets the Principal of Single Responsibility. We

have used LCOM (Lack of Cohesion Of Methods)

metric to evaluate the cohesiveness of the

LanSimulation project after employing the

conventional and the proposed approach for

refactoring.

Fig.7 Comparative view of duplicated lines

after/before refactoring with/without test

adaptation

Fig.8 Comparative view of LCOM metric

after/before refactoring with/without test

adaptation

Sonar‟s [33] definition of LCOM is different

from the conventionally used metric. It measures the

number of "connected components" in a class. A

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 49

connected component is a set of related methods and

fields. There should be only one such component in

each class. If there are 2 or more components, the

class should be split into so many smaller classes

[33]. A class that is totally cohesive will have an

LCOM of 1. A class that is non-cohesive will have an

LCOM greater than 1. The closer to 1 it approaches,

the more cohesive, and maintainable, a class is.

LCOM prior to refactoring was higher both in

the production code and test code because of

Network and LanTests class. These classes were

acting as God Classes. After refactoring without test

adaptation the average LCOM value for the

production code was reduced but the LCOM for test

code remained high which contributed to the LCOM

> 1 for the complete code. On the contrary after

refactoring with test adaptation the LCOM for test

code, production code and eventually complete code

was reduced from 1.8 to 1.05 (See Table 6 & Fig.8).

6) Response for a class

The response set of a class is a set of methods

that can potentially be executed in response to a

message received by an object of that class [33]

Fig. 9 Comparative view of aggregate RFC

after/before refactoring with/without test

adaptation

The aggregate RFC for both the test code and

production code has reasonably increased (see Table

6 and Figure 9). With the increase in the number of

classes the messaging between the classes has also

raised and so has the RFC. Prior to refactoring there

were 5 classes in the system including one test class

and aggregate RFC for complete code was 119. After

refactoring with test adaptation the classes were

increased to 11(production code) and 9 (test code)

and aggregate RFC for complete code was increased

to 259. While, without test adaptation there were 11

classes in the production code and one test class and

aggregate RFC for complete code was 174. With the

increase in RFC the maintenance effort also increases

7) Coupling

High coupling is generally considered as a bad

design characteristic. But talking about the unit tests

and their coupling with the production code, it is

supposed to be high. After the introduction of testing

frameworks, the test code is kept separated from the

production code physically, While, the logical

bonding between these two cannot be reduced or

broken. So in this very case refactoring with test

adaptation would output production and test code

with higher coupling.

Afferent couplings of a class measure the

number of other classes that use the specific class.

Efferent couplings measure the number of different

classes used by the specific class. The ratio of

efferent coupling (Ce) to total coupling (Ce + Ca)

such that I = Ce / (Ce + Ca) is called the Instability

Index. This metric is an indicator of the class's

resilience to change. The range for this metric is 0 to

1, with I=0 indicating a completely stable class and

I=1 indicating a completely instable class [41].

In Table 7 and Figure, it can be seen that

average instability index for refactoring without test

adaptation has increased and for refactoring with test

adaptation the instability index has reduced to 0.71.

This has happened because in the former approach

the increase in classes of production code has not

affected the number of test classes and there is only

one test class for 11 production classes therefore it is

highly instable with respect to maintenance.

Table 7 Comparative view of coupling metrics after

refactoring with/without test adaptation

 Sum of

Afferent

Couplings

Sum of

Efferent

Couplings

Average

Instability

Index

Production

Code

BR 9 6 0.38

ARW/OTA 40 30 0.47

ARWTA 53 30 0.420671

Test Code

BR 1 3 0.75

ARW/OTA 1 8 0.888889

ARWTA 13 33 0.71

Complete

Code

BR 10 9 0.43

ARW/OTA 57 38 0.50

ARWTA 66 63 0.55

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 50

Fig. 10 Aggregate Afferent Couplings after/before

refactoring with/without test adaptation

Fig. 11 Aggregate Efferent Couplings after/before

refactoring with/without test adaptation

Fig. 12 Aggregate Instability Index after/before

refactoring with/without test adaptation

In Figures 10,11 and 12 it is obvious that

afferent and efferent couplings for the test code and

production code have increased significantly

specifically after refactoring with test adaptation. The

reason for this increase is, that prior to refactoring

most of the code was residing in God Classes namely

Network and LanTests. When our approach was

applied on the code the overall number of classes

increased in a bigger proportion as compared to

refactoring without test adaptation and hence, this

gave rise to the couplings as well. It is interesting to

note that the instability index was reduced for the test

code in spite of the increase in couplings. When it is

said that low coupling represents better quality, this is

a very subjective statement. Using our results we also

establish the fact that in the case of relationship

between the production code and test code, high

coupling is required in order to ensure maximum

code coverage. In conclusion our approach has

performed better in terms of adequately associating

the production and test code. It has also made the

system more stable in terms of maintenance

7) Code Coverage

Code coverage describes the extent to which

the source code of a program has been tested. In our

study we have employed Line Coverage and Branch

Coverage for measuring code coverage using

Cobertura [36]. Line coverage implies lines of code

that are executed during unit test execution divided

by the total number of executable lines, while, branch

coverage measures the percentage of conditionals

that are evaluated at least once divided by the total

number of branches. As elicited in Table 4, with the

evolution of production code, we identified the

missing tests and created them such that the total

coverage increased. The results are apparent in Table

8 and Figures 13 (a & b). The test extension along

refactoring of production code results has increased

branch coverage to almost 50%, whereas line

coverage has risen to almost 97% after refactoring

with test adaptation.

4. Conclusions

Refactoring is a structured and disciplined

process of code transformation that should not

invalidate behavior or deteriorate quality of any

component in the software system including clients

and unit tests. Unit tests are clients that require

additional adaptations as compared to ordinary

clients. If these changes are not performed, test code

can get infected with various test smells including

Eager Test, Indirect Test, Test Code Duplication etc.

Unit tests owe high significance in the

refactoring process because they determine the

validity of software behavior after refactoring. The

existing state of art and practice on refactoring

generally does not address appropriate client

adaptation specifically test code adaptation. Java

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 51

Table 8 Comparative view of test coverage metrics

after/before refactoring with/without test

adaptation

Branch

Coverage

(BC)%

Line

Coverage

(LC)%

of Un-

covered

Branches

(UB)

of Un-

covered

Lines

(UL)

Before

Refactoring 27.75 79.9 76 38

After

Refactoring

without Test

Adaptation 55.6 86.27778 61 28

After

Refactoring

With Test

Adaptation 78.925 96.62222 53 8

Fig.13(a) Comparative view aggregate branch and

line coverage metrics after/before

refactoring with/without test adaptation

Fig.13(b) Comparative view of uncovered lines and

branches metric after/before refactoring

with/without test adaptation

development tools like JBuilder and IntelliJ

syntactically adapt the clients and unit tests, such that

externally observable behavior is preserved but they

instead of improving the overall quality of the

system, worsen it by inducing test smells. Similar is

the case with Fowler‟s guidelines, which do not

provide any mechanics for restructuring the test code.

Therefore, there is a need to extend the

refactoring guidelines to address these issues. Also,

automation is critical for refactoring, as manual

refactoring can be very tedious and error prone. We

have developed an Eclipse Plugin name TAPE (Test

Adaptation Plugin For Eclipse) that extends the

existing refactoring plugin. Our strategy is to provide

developer assisted refactoring support such that all

major actions are suggested to the developer and are

peformed with his/her consent by the tool. The

preliminary information about TAPE can be found in

[39].

5 References

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and

D. Roberts. Refactoring: Improving the Design

of Existing Code. 1999

[2] A. van Deursen and L. Moonen. The Video

Store Revisited: Thoughts on Refactoring and

Testing. In Proceedings of the 3rd International

Conference on Extreme Programming and

Agile Processes in Software Engineering (XP

2002), pp. 71-76, 2002

[3] A. van Deursen, L. Moonen, A. van den Bergh

and G. Kok. Refactoring Test Code.

In Proceedings of the 2nd International

Conference on Extreme Programming and

Flexible Processes in Software Engineering

(XP2001), pp. 92-95. 2001

[4] S. Counsell , R. M. Hierons , R. Najjar , G.

Loizou and Y. Hassoun, The Effectiveness of

Refactoring, Based on a Compatibility Testing

Taxonomy and a Dependency Graph, In

Proceedings of the Testing: Academic &

Industrial Conference on Practice And

Research Techniques, p.181-192, August 29-

31, 2006

[5] S. Counsell, S.Swift and R.M. Hierons, A Test

Taxonomy Applied to the Mechanics of Java

Refactorings, In Proceedings of SCSS (1), pp.

497--502 , 2007

[6] S. Counsell, Is the need to follow chains a

possible deterrent to certain refactorings and an

inducement to others? In Proceedings of second

International Conference on Research

Challenges in Information Science, 2008

[7] B. George and L. William, An Initial

Investigation of Test Driven Development in

Industry. In Proceedings of SAC ,2003

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4620134
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4620134

Pak. J. Engg. & Appl. Sci. Vol.13, July, 2013

 52

[8] H. C. Jiau and J. C. Chen , Test code

differencing for test-driven refactoring

automation, ACM SIGSOFT Software

Engineering Notes Volume 34 , Issue no 1,

January, 2009

[9] G. Meszaros and M. Fowler, xUnit Patterns:

Refactoring Test Code, Addison-Wesley, 2007

[10] B. Marick, Testing for Programmers, Lecture

Notes available at:

http://www.exampler.com/testing-

com/writings/half-day-programmer.pdf

[11] J. U. Pipka, Refactoring in a “test first”-world.

In Proceedings of 3rd Int‟l Conference on

eXtreme Programming and Flexible Processes

in Software Engineering, 2002

[12] J.Link and P. Frohlich, Unit Testing in Java:

How Tests Drive The Code. Morgan

Kaufmann ,2003

[13] W. Basit, F. Lodhi and U. Bhatti, Extending

Refactoring Guidelines to Perform Client and

Test Code Adaptation, In Proceedings of XP

2010, pp. 1-13.

[14] T. Mens and T. Tourwe´, “A Survey of

Software Refactoring,” IEEE Trans. Software

Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004.

[15] M. MirzaAghaei, F. Pastore and M. Pezz,

Automatically repairing test cases for evolving

method declarations.

In Proceedings of ICSM 2010,pp. 1-5

[16] B. Daniel, V. Jagannath, D. Dig, and D.

Marinov. Reassert: Suggesting repairs for

broken unit tests. Proceedings of the 24th

IEEE/ACM international Conference on

Automated Software Engineering. IEEE/ACM,

2009.

[17] B. Daniel, T. Gvero, and D. Marinov, On test

repair using symbolic Execution, In

Proceedings of International Symposium on

Software Testing and Analysis, 2010.

[18] J. Henkel and A. Diwan. CatchUp!: Capturing

and replaying refactorings to support API

evolution.In Proceedings of ICSE‟05, pp. 274–

283.

[19] A. Zaidman, B. V. Rompaey, S. Demeyer and

A. van Deursen. Mining Software Repositories

to Study Co-Evolution of Production and Test

Code. In Proceedings of 1st International

Conference on Software Testing (ICST'08), pp.

220-229, IEEE Computer Society, 2008

[20] M. Streckenbach and G. Snelting. Refactoring

class hierarchies with kaba. In Proceedings of

the 19th annual ACM SIGPLAN conference on

Object-oriented programming, systems,

languages, and applications, pp. 315–330.

ACM, 2004.

[21] D. Dig, S. Negara, V. Mohindra, and R.

Johnson. Reba: refactoring aware binary

adaptation of evolving libraries. In Proceedings

of the 30th international conference on

Software engineering, pp, 441–450. ACM,

2008.

[22] JUnit, At "http://www.junit.org”

[23] Sun Microsystems, I. (2011). Netbeans ide. At

http://www.netbeans.org/.

[24] Eclipse.org (2011). Eclipse project. At

http://www.eclipse.org.

[25] Jet Brains, I. (2011). Intellij idea. At

http://www.intellij.com/idea/.

[26] Embarcadero Technologies, I. (2011). Jbuilder.

At

http://www.codegear.com/br/products/jbuilder.

[27] quilt.sourceforge.net/tutorials/junit.htm

[28] F. Bannwart and P. Müller, Changing Programs

Correctly: Refactoring with Specifications.

Proceedings of FM pp, 492-507, 2007

[29] E.M. Guerra and C.T. Fernandes, Refactoring

Test Code Safely. In Proceedings of the

International Conference on Software

Engineering Advances , 2007

[30] Different kinds of testing, At

css.dzone.com/articles/different-kinds-testing

accessed on 5
th
 July, 2012

[31] B. Daniel,D.Dig,K. Garcia and D. Marinov

(2007). Automated testing of refactoring

http://search.barnesandnoble.com/booksearch/results.asp?ATH=Gerard+Meszaros
http://search.barnesandnoble.com/booksearch/results.asp?ATH=Martin+Fowler
http://www.exampler.com/testing-com/writings/half-day-programmer.pdf
http://www.exampler.com/testing-com/writings/half-day-programmer.pdf
http://www.cs.colostate.edu/icst2008/
http://www.junit.org/
http://www.netbeans.org/
http://www.codegear.com/br/products/jbuilder
http://www.sigmod.org/dblp/db/indices/a-tree/b/Bannwart:Fabian.html
http://www.sigmod.org/dblp/db/conf/fm/fm2006.html#BannwartM06

A Metric Based Evaluation of Unit Tests as Specialized Clients in Refactoring

 53

engines. In Foundations of Software

Engineering, pages 185–194.

[32] G. Soares, R. Gheyi, T. Massoni, M. Corn´elio,

and D. Cavalcanti, “Generating unit tests for

checking refactoring safety,” in SBLP, 2009,

pp. 159–172

[33] http://docs.codehaus.org/display/SONAR/Metri

c+definitions

[34] R.C.Martin (2002). Agile Software

Development: Principles, Patterns and

Practices. Pearson Education. ISBN 0-13-

597444-5.

[35] S.Demeyer et al. 2005. The LAN-simulation: A

Refactoring Teaching Example. In Proceedings

of the Eighth International Workshop on

Principles of Software Evolution (IWPSE '05).

IEEE Computer Society, Washington, DC,

USA, 123-134.

[36] Cobertura, cobertura.sourceforge.net/

[37] W. Basit, F. Lodhi and U. Bhatti,Evaluating

Extended Refactoring Guidelines,To appear in

Proceedings of QUORS 2012.

[38] W. Basit and F. Lodhi , Preservation of

Externally Observable Behavior after Pull Up

4Method Refactoring, In Proceedings of ICCIT

2012, pp. 309-314.

[39] L.Kiran, F. Lodhi and W. Basit , Test Code

Adaptation Plugin for Eclipse, In Proceedings

of ICCIT 2012, pp. 297-302.

[40] W. Basit, F. Lodhi and M.U. Bhatti,Unit Test:

A specialized client in refactoring ,To appear in

Proceedings of ICSOFT 2012.

[41] Instability,

http://codenforcer.com/instability.aspx

accessed on: 5
th
 July, 2012

http://docs.codehaus.org/display/SONAR/Metric+definitions
http://docs.codehaus.org/display/SONAR/Metric+definitions
http://en.wikipedia.org/wiki/Robert_Cecil_Martin
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-597444-5
http://en.wikipedia.org/wiki/Special:BookSources/0-13-597444-5
http://codenforcer.com/instability.aspx

