
Pak. J. Engg. Appl. Sci. Vol. 22 January, 2018 (p. 30-42)

30

Timing Analysis of Parallel Software Applications for
Multi-core Embedded Systems

Muhammad Waqar Aziz*1 and Syed Abdul Baqi Shah2

1. Department of Computer Science, CECOS University of IT and Emerging Sciences, Pakistan

2 Science and Technology Unit, Umm Al-Qura University, Saudi Arabia
* Coressponding Author: Email: waqar@cecos.edu.pk

Abstract

Real-Time Embedded Systems (RTES) must be verified for their timing correctness where knowledge about the

Worst-Case Execution Time (WCET) is the building block of such verification. Traditionally, research on the

WCET analysis of RTES assumes sequential code running on single-core platforms. However, as computation is

steadily moving towards using a combination of parallel programming and multi-core hardware, new challenges

in timing analysis, and especially in WCET analysis need to be addressed. Towards this direction, this paper

presents the Timing Analysis tool for Parallel Embedded Software (TAPES). The proposed tool allows the WCET

estimation of parallel applications running on multi-core hardware through a hybrid measurement-based

analysis method, that combines the program flow and timing information into an Integer-Linear Programming

problem to estimate the WCET. In addition, the TAPES tool allows the measurement of the longest end-to-end

execution time by capturing the timing properties of the parallel executing threads using time-stamped execution

traces of the program. The applicability of the proposed tool is demonstrated through the timing analysis of an

embedded parallel benchmark suite – the ParMiBench. The results showed that the calculated WCET estimates

have significantly less over-approximation compared to the measured WCET estimates. The comparison of the

calculated and measured WCET estimates showed modest over-estimates.

Keywords: Multi-core Embedded Systems; Worst-Case Execution-Time Analysis; Parallel Embedded

Software; Real-Time Systems.

1. Introduction

After hitting a technological dead end in

providing further computational speed by

increasing clock frequency, attention has

been (re)put on parallel programming

multi-core architectures as the solution to

increase the performance of computation

once again. Although the execution time of

an individual task can be reduced by

decomposing it into parallel executing

threads, it poses a number of problems while

designing Real-Time Embedded Systems

(RTES), for example, in tasks scheduling.

Generally, to ensure the correct working of

RTES, a schedulability analysis is performed

that checks all tasks can meet their deadlines

at run-time. This requires the knowledge

about the Worst-Case Execution Time

(WCET) of the individual tasks. In addition,

the WCET analysis is also required to

guarantee the behavior of RTES and as an

input to system response time computation.

The WCET analysis is normally performed

statically or dynamically [28]. The static

analysis methods analyze the control-flow

paths, without executing the program code,

and combine this information with the

abstract hardware model to obtain upper

bounds. In contrast, dynamic analysis

methods execute the program on actual

hardware or simulator to measure its

execution time [28]. Typically,

measurement-based approaches are not

considered to produce safe (i.e., not under

approximated) estimates. Because the results

obtained by measuring the execution times

constitute a subset of the actual possible

executions, where a pathological worst-case

could have been missed during testing.

Hence, reliable guarantees of observing the

worst-case cannot be given. However, it is

sufficient for soft RTESs where occasional

misses of deadlines are tolerated. For

safety-critical systems, where absolute safety

of programs is required, static analysis

should be performed.

In static analysis, the necessary flow

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

31

information, such as loop bounds and

infeasible paths, is derived in the

program-flow analysis [1, 5, 10, 13]. Next,

the execution times of the program segments

are derived in the processor-behavior

analysis, by statically modeling the hardware

[4, 16, 26]. Finally, the results of the

previous steps are combined together in a

calculation method [11, 15, 21, 23] to obtain

the WCET estimation. Unfortunately, these

steps work adequately for sequential

programs running on single-core

architectures, but are challenged in the

parallel-computing world. First, parallel

applications do not execute as a stream of

sequential instructions, so conventional

control-flow analyses must be updated to

consider the inherent concurrency. Second,

hardware no longer has bounded timing

behavior due to inter-thread interferences,

which makes hardware modeling impossible

or extremely hard. Third, WCET calculation

techniques are suited for additive sequential

models, where the execution times of the

segments are added to drive the WCET.

To overcome the disadvantages of both static

and dynamic analyses, this work investigates

a hybrid solution for the timing analysis of

parallel embedded applications running on

multi-core architectures. A hybrid approach

combines the elements of static and dynamic

analyses [19]. It has the same steps as static

analysis, except that the processor-behavior

analysis is replaced by direct run-time

measurements on the hardware. In this work,

we propose the Timing Analysis tool for

Parallel Embedded Software (TAPES) that

consumes a parallel program as input and

produces its calculated and measured WCET

estimates. To calculate the WCET, a novel

program-flow analysis method is proposed

for parallel applications that identifies the

execution behavior of their sub-threads at the

source code level. The obtained flow

information is then combined with the

execution times of the program segments to

calculate the WCET estimates (hence termed

as calculated WCET). In addition, TAPES

also allows the measurement of the longest

end-to-end execution time (i.e., the

measured WCET) of the parallel program to

capture its low-level timing behavior. The

traces are obtained by executing the parallel

application using Gem5 architecture

simulator [2].

The layout of the paper is as follows: The

next section details the preliminaries

required to understand the rest of the paper.

Section 3 provides the details of the hybrid

measurement-based method used to

calculate the WCET of parallel programs,

followed by execution-time measurement

details in Section 4. The effectiveness of

TAPES is demonstrated via timing analysis

of embedded parallel benchmark suite –

ParMiBench [17], in Section 5. The related

work is briefly surveyed in Section 6, while

the paper is concluded in Section 7.

2. Preliminaries

2.1 Task/ Execution Model

This work deals with computing the WCET

estimates of a parallel program composed of

synchronizing threads that execute

simultaneously on multiple cores of a single

device. Thus, it should not be confused with

massively parallel systems involving several

programs running on a grid of computing

devices. Hence, the issues related to massive

parallelism, such as communication costs

due to networking of different nodes, are not

dealt with. While most of the existing work

(e.g., [22, 24]) assume a time-predictable

shared-memory multi-core architecture, we

consider the problem of finding the WCET

for arbitrary multi-core hardware. It was,

therefore, expected that the execution times

in the case of hardware with no analyzability

characteristics tend to vary tremendously

because of unbounded interferences between

the executing threads. Nevertheless, this

work is scalable enough to be applied to both

analyzable and off-the-shelf hardware.

2.2 Scope

This work focuses on parallel applications

developed using POSIX threads, which is the

Timing Analysis of Parallel Software Applications for Multi-core Embedded Systems

32

widely used industry standard for developing

parallel programs. The POSIX standard

provides the explicit characterization of

thread control (creation and join) and

synchronization through mutexes and

barriers. The control of parallel program is

handled implicitly by the POSIX thread APIs

(Pthread). As a hybrid measurement based

analysis is performed in this work that

replaces the processor modeling with

measurement of the execution times of the

program segments. Hence, the

micro-architecture analyses, such as

contention effects caused by the parallel

hardware are out of the scope of this work.

3. Hybrid Measurement-Based
Analysis

The proposed TAPES tool uses the hybrid

measurement-based analysis method to

calculate the WCET estimates of parallel

applications. The details of the hybrid

method are provided below, which include

the description of a novel program flow

analysis method for parallel applications.

3.1 Program Flow Analysis

Contrary to sequential programs, the flow

analysis of a parallel application is

responsible to investigate the dependency

among threads and the program concurrency.

The proposed flow analysis method allows

loop analysis and identifies the threads basic

information, its dependencies and the

program concurrency. To achieve this, the

following steps are defined for the flow

analysis of parallel embedded applications,

as shown in Figure 1.

 Thread Identification is related to finding

the thread basic information, such as the

number of threads created and the number

of times these threads are created. This

information is useful in thread scheduling

and their mapping to cores. This step also

includes analyzing the load balancing,

i.e., how the work is distributed among

the threads, as improper load balancing

increases the discrepancy of execution

Figure 1: Steps of the proposed program flow

analysis method for parallel applications

time between sub-tasks. Moreover, the

task granularity is also analyzed in terms

of its decomposition among threads. The

fine-grained task decomposition would

result in increased synchronization and

communication overhead and vice verse.

In such case, the time spend in

synchronization and communication

should be analyzed and added to the

overall WCET.

 Function Analysis allows the in depth

analysis of the function passed to the

thread. In a parallel program this is

usually the code that is executing in

parallel and thus has the major effect on

the timing estimates. Inside the function,

all the loops are analyzed, as embedded

programs spend most of their execution

time in loops and the one which seems to

take more iterations is selected based on

programmers observation. The selected

loop is further divided into different

segments as per the definition of a basic

block [14]. The identified program

segments are then instrumented with

counters to count the number of times

they are executed (termed as their count).

This execution count information is

required later in the calculation phase to

compute the WCET estimates.

Furthermore, different types of

dependencies, if exist, are highlighted,

such as data dependency or dependency

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

33

of one part of the program on the other.

 Construct Identification deals with the

identification of concurrency present in

the parallel code. This is achieved by

identifying the synchronization

constructs, e.g., barriers, locks, condition

variables, and joins. These construct also

provide the synchronization related

information, such as, the location where

synchronization is occurring, threads

sharing the sync variables, path on which

a thread holds lock(s) and so on. This

information is used in the next step to

augment a Control Flow Graph (CFG).

 CFG Development is concerned with the

development of a conventional CFG of

the parallel application. CFG is a data

structure that defines the set of all possible

execution paths of a task [28]. A CFG can

be constructed automatically, e.g.,

through a compiler. Although conditional

path analysis is not the aim of this

research, the constructed CFG of the

whole program can be used to determine

all the conditional paths (as a CFG also

includes all conditional paths).

Consequently, a separate conditional path

analysis is not considered. Further, as all

edges and nodes of the CFG are taken in

account to cover all possible paths, any

state machine coverage analysis is not

required. The thread’s information,

collected in previous steps, is then

augmented to the developed CFG to

represent thread synchronization and

dependencies. In this way, the flow

related information of the parallel

application can be accounted for within

the WCET computation process.

3.2 Execution Time Measurement

The execution time (cost) of the identified

program segments is obtained using a tracing

mechanism that extracts timestamps from an

instrumented parallel program. To achieve

this, the program segments (basic blocks) are

first enclosed with the instrumentation points

(ipoints) that are inserted using m5ops utility

provided by Gem5 simulator. m5ops

provides timestamps without affecting the

actual execution time, thus producing no

instrumentation cost. While delimiting a

basic block, these ipoint instructions cause

the target to produce a timestamp upon

execution. However, when this instrumented

program is executed, it produces a bulk of

information, which is given to the trace

parser to extract the generated timestamps

and hence compute the execution cost. This

cost information is combined with the

execution count information in the

calculation phase to compute the WCET

estimates.

3.3 WCET calculation

The WCET of a parallel program is derived

by combining the flow constraints and

executing times of program segments into an

Integer-Linear Programming problem – that

is obtained from Implicit Path Enumeration

Techniques (IPET) [14]. The flow

constraints include the execution counts,

which represent the number of times each

basic block is executed. Whereas, the cost of

executing the basic blocks is obtained

through instrumentation, as explained in

Section 3.2. To derive the execution time

estimate of each thread, the ILP problem is

formulated as the following objective

function, which is taken from [14]:

ii

N

i

xcZ *=
1=

(1)

where ci is the cost a basic block in terms

of execution time and xi is the number of

times this basic block is executed. The

vaiable x is bounded by loop iterations,

which cannot be infinite. Infinite loops

would never allow a RTES to meet its timing

constraints and thus would lead to its failure

An upper bound is determined by

maximizing the sum of the products of the

execution counts and times.

Timing Analysis of Parallel Software Applications for Multi-core Embedded Systems

34

Figure 2: Internal working of the developed measurement-based analysis tool

4. Dynamic Analysis

TAPES also provides the facility to perform

dynamic analysis of parallel applications, by

executing and measuring the execution time.

TAPES allows capturing the execution time

of a parallel application, so that its execution

can be analyzed from different aspects.

Furthermore, TAPES can provide

information regarding start and end times of

threads, scheduling of threads, the CPU time

taken by each thread, end-to-end time of

each thread and the program itself. The

starting and ending points of thread

execution are detected, as depicted in Figure

2, by reading the execution traces generated

by the simulator. In this way, the execution

times of individual threads, as well as the

entire application can easily be calculated.

To automate this process, an algorithm is

developed that calculates the thread

execution time from the obtained traces.

5. Experimental Evaluation

5.1 Execution Platform

Like sequential programs, the measurement

of parallel applications can be performed on

the given hardware or on a simulator [28].

Simulation is one of the standard timing

analysis technique that is used to estimate the

execution time of tasks [28]. As this work is

related to finding the WCET of arbitrary

multi-core hardware, we do not assume a

time predictable multi-core hardware (e.g.,

MERASA [27]). Instead, the widely used

computer architecture simulator (Gem5) is

used to simulate off-the-shelf multi-core

hardware. One can argue on the use of the

simulator for performance analysis instead of

real hardware platform. Gem5 was selected

as it is a cycle-accurate simulator that gives a

cycle accurate model of the actual real-time

embedded hardware [2]. Therefore, it

provides the real-time behavior and almost

the same impact as a real hardware platform.

Moreover, Gem5 is a modular platform that

provides full-system simulation to execute a

program in the operating system

environment, which is also our research

interest. Additionally, Gem5 supports

several commercial Instruction Set

Architectures (just as ARM, ALPHA, x86,

SPARC, PowerPC and MIPS), CPU types,

cache levels, memory and other components,

which make it more powerful than other

similar simulators, such as SimpleScalar [3].

Initially, we did performed our experiments

on Raspberry Pi. However, it did not provide

any mechanism of getting traces, which

could be used to obtain the exact clock cycle

of the executed thread or its part, as needed

in this work. Such facilities are only

provided by the specialized equipment and

tools provided by commercial companies,

such as RapiTime by Rapita Systems [30].

Noticeably, these commercial products are

very expensive and still do not provide all

facilities needed for our experiment, such as

support of simultaneous multithreading.

Furthermore, during the process of design

space exploration for real-time embedded

hardware systems, it is not possible to use a

fix hardware platform. For these obvious

reasons, Gem5 proved itself as a perfect

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

35

choice for our experimentation. The

configuration of Gem5 used in this

experiment included four cores of ARM

detailed architecture (ARMv7-A ISA based)

with default size of L2 cache (2MB), 256

MB of memory and ARM embedded Linux

as the guest operating system contained in a

disk image. The experimental stages of our

framework are depicted in Figure 3.

5.2 Benchmark Suite

This research required a publicly-available

software application which should both be

embedded and parallel. To fulfill these

requirements, ParMiBench suite was

selected for experimentation in this work.

ParMiBench is an open source parallel

version of a subset of MiBench benchmark

suite [9] – many of whose benchmarks

appear to be suitable candidates for WCET

analysis [6]. ParMiBench is a set of

embedded parallel benchmarks that is

actually designed to evaluate the

performance of embedded multi-core

systems. The benchmark is implemented

using C language and POSIX threads to

achieve parallelism and it supports

Unix/Linux based platforms [17]. The Gem5

simulator was used to execute the

ParMiBench benchmark and measure the

execution time of its threads. ParMiBench

suite includes benchmarks from various

domains of the embedded applications, such

as control and automation, networks, offices,

and security. These benchmarks are Susan

(for image processing), BasicMath (for

mathematical operations), StringSearch (for

string searching), Dijkstra (to find the

shortest path) and Sha (for data partitioning).

We have used the standard gcc compiler

without using any compiler specific

optimization, so that the impact of

compilation tools is minimized.

Nevertheless, the role of compilation tools

on parallelizing the user programs is

recognized as out of scope of this work.

Figure 3: Overview of the experimental framework used in TAPES for WCET estimates

Timing Analysis of Parallel Software Applications for Multi-core Embedded Systems

36

Figure 4: Identified code segment

5.3 Findings

The following facts were revealed when the

proposed program flow-analysis method was

applied to the ParMiBench suit. While

reporting our findings, usually all the

benchmarks of the suite are discussed, but in

some cases the explanation is focused on the

StringSearch benchmark for simplicity.

StringSearch benchmark is related to

searching a string from a text file.

 Thread Identification: In ParMiBench the

number of threads is fixed in some

benchmarks (e.g., Dijkstra and Susan),

whereas in others the user is provided the

option to enter. In some benchmarks,

(e.g., StringSearch) threads are created

only once as compared to other

benchmarks (e.g., Susan), where threads

are created twice or more. In ParMiBench

static load balancing is used, i.e., the work

is equally distributed among the threads.

Instead of partitioning the program logic,

the input data are divided in such a way

that threads work independently. In

addition, coarse-grained task

decomposition has been used in most of

the cases. In StringSearch benchmark, the

sub-tasks such as task decomposition,

data partitioning and distribution of work

among workers are performed once and

Figure 5: CFG of the identified code segment

sequentially for all types of inputs. Thus,

they have no major effect on the

execution time.

 Functional Analysis: Taking the example

of StringSearch benchmark, the

difference lies in the search method used,

as far as the timing analysis is concerned.

For instance, in the Pratt-Boyer-Moore

search algorithm the while loop, shown in

Figure 4, was identified as the potential

code segment that would consume more

time. This loop was divided into two basic

blocks: the code used for shifting the

characters (inner while loop – line 3-7)

and the code used for comparison (the if

statement – line 8-16).

 Construct identification: To identify the

concurrency in the parallel programs, we

used mutex and condition variables

present in POSIX thread library. The

mutex variables provide locking and

unlocking mechanism for mutual

exclusion of critical section. We used the

mutex variables pthread_mutex_lock and

pthread_mutex_unlock variables for the

identification of critical section in the

code. The condition variables are used for

the identification of thread

synchronization. We used pthread_cond_

wait, thread_cond_signal and pthread_

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

37

cond_broadcast variables for detecting

the waiting and signaling to synchronize

threads.

 CFG Development: In this step, the CFG

of the parallel application was developed

(an example is shown in Figure 5). The

CFG is augmented with the count

information produced in the functional

analysis step.

5.4 Comparison and Observations

In the scarcity of research studies on timing

analysis of parallel programs running on

multi-core architectures, it is very difficult to

compare TAPES with the existing

approaches. Firstly, TAPES allows hybrid

analysis whereas the existing studies are

based on either static or dynamic analysis.

Secondly, each of these studies consider a

particular aspect of parallelism different

from others (details are provided in the

related work section). Thirdly, each study

has calculated the WCET estimates of

different software applications. Lastly, the

resources (e.g., the modified WCET

estimation tool) for re-doing the experiments

are not available. To evaluate the pessimism

of the proposed hybrid solution the

calculated WCET estimates are compared

with the measured ones. This is not only

due to the above mentioned reasons but is

also in accordance with the general trend

found in the research studies on timing

analysis of parallel programs [8, 22, 24].

Table 1 shows the measured WCET of

different benchmarks obtained by executing

them, the WCET estimates of these

benchmarks calculated using the hybrid

analysis and the percentage of pessimism in

the calculated WCET estimates with respect

to the measured estimates. Note that the units

of time, in Table 1, is the number of

processor clock cycles. From the table, it can

be observed that the calculated estimates

bound the measured estimates. This is

precisely the benefit of using the hybrid

analysis: the WCET estimates are computed

using the measured execution times of

program segments and flow information,

instead of relying on the worst-case input to

trigger long end-to-end execution times.

However, other real life software

applications would be needed to test the

scalability of this analysis. One major

obstacle in this regard is the unavailability of

such software applications which are

embedded, real-time and parallel using

Pthreads standards. Since, such real life

applications are not yet available, scalability

testing of this analysis cannot be performed

and left as future work.

6. Related Work

In the literature, the WCET analysis is

performed through static analysis [24],

model checking [7, 29] and

measurement-based approaches [21], as

depicted in Figure 6. However, there have

been few contributions towards timing

analysis of parallel programs, as the existing

WCET-analysis research mostly focuses on

sequential programs running on single-core

architectures. Rochange et al. [25] for the

first time highlight the problem of analyzing

the timing behavior of nonsequential

software on a multi-core architecture. They

report a manual analysis of a parallel

application, which determines the

synchronization and communication among

its executing threads. In the following, we

shall exclusively review WCET analysis of

Table 1: The measured WCET estimates along with the WCET estimates calculated using the hybrid

analysis.

Benchmark WCET Measured WCET Calculated Pessimism

String search 12886961500 14991728000 16.33 %

Susan 10702583000 11836753000 10.60 %

Dijkstra 4357948800 5376740000 23.38 %

Timing Analysis of Parallel Software Applications for Multi-core Embedded Systems

38

parallel programs, which is the topic of this

research.

The worst-case reponse time(WCRT), of

parallel applications running on multi-core

platforms, is computed in [24]. Instead of

proposing a new technique, the approach

extends a state-of-the-art WCET estimation

method to estimate the WCRT of parallel

applications. In this regard, only the control

flow analysis phase is modified: the classical

control flow analysis runs (separately) on the

functions/tasks that are put in parallel, and

then new edges are added between basic

blocks to model synchronization /

communications among tasks. One new edge

is added for each inter-task communication

along with duration to model the message

transmission time for communications. The

hardware-level analysis runs unmodified on

each function/task taken in isolation, as if it

was not communicating with the other tasks

executed on the other cores. Similarly, the

WCET computation step is applied

unmodified, as new constraints are

automatically added in the WCET

calculation equations (by introducing new

edges) and communication delays are

automatically taken into account.

A method for determining the impact of

parallel monitoring on WCET is defined in

[20]. The method calculates the maximum

monitoring stall (time) and add it to the

WCET calculated using popular methods.

The traditional ILP based analysis for

sequential program is extended to

incorporate the overhead of monitoring. A

FIFO behavior is added between the main

and the monitoring cores. This non-linear

FIFO behavior is modeled as a MILP

problem to produce worst-case monitoring

stalls. These can be incorporated into

traditional IPET methods for WCET

estimation.

An approach for automatic timing analysis of

parallel applications is presented in [22] that

show how to compute the synchronization-

related stall time of individual threads. The

WCET of the parallel program is determined

by computing the WCET of the main thread

and adding to it the worst-case stall time of

child threads at synchronizations. The stall

time of child threads is computed based on

two types of synchronization patterns

(critical sections and progress

synchronizations). To ease the identification

of these patterns, an annotation format is also

designed. However, the approach relies on

user-provided annotations to identify the

synchronization patterns.

In the existing work, path based analysis

methods used for WCET calculation, are

classified as tree-based, path-based and

IPET-based [28] (see Figure 6). In tree-based

calculation, the WCET bound is calculated

by bottom-up traversal of an abstract syntax

tree of the program. Although tree-based

calculation is very fast, they return loose

WCET estimates [21]. Path-based

calculation derives WCET considering all

paths of the program, requiring the

examination of an exponential number of

paths [21]. In IPET-based calculation, the

program flow information and execution

times are transformed into an ILP problem

where the longest execution is maximized

[28]. The WCET analysis of parallel code

can also be performed using the

model-checking techniques [7] (using the

model-checking on the timed automata

system). The structure of the program is

represented by the timed automata and then

the UPPAAL modeling and verification tool

is used to perform WCET analysis. The

WCET analysis is performed by running the

model-checker (to verify system properties)

using UPPAAL automatically. However, the

drawbacks of this method are reported by the

authors in an ongoing research work [8] on

analysis of threads synchronization.

Research on WCET estimation on multi-core

architectures has mainly focused on the

predictability of accesses to shared

resources. For example, the predictability

features and the timing variance of single and

multi-core processors are analyzed in [12].

The paper provides an overview of the

hardware features leading to predictability

problems. Some examples of multi-core

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

39

Figure 6: Classification of Worst-Case Execution Time estimation methods

configurations are also shown. To obtain

predictable multi-core architectures, several

configuration and design recommendations

are presented. These include the

recommendations for cache replacement

policies, shared bus protocol, private caches

and private memories.

Similarly, a WCRT analysis method is

presented [18] for concurrent programs

running on shared cache multi-cores. The

concurrent programs are visualized in the

system model as graphs of Message

Sequence Charts. The L1 cache behavior is

analyzed for each task in each core

independently (intra-core cache analysis).

By using a filter, only the memory accesses

that miss in the L1 cache are analyzed at the

L2 cache level. Similar to L1, the L2 cache

behavior is analyzed for each task in each

core independently, assuming no conflict

from other tasks in other cores. An iterative

solution (L2 cache conflict analysis and

WCRT analysis) is proposed to overcome

the conflicts of L2 cache (by estimating and

exploiting the lifetime information for each

task in the system).

There also exists some research projects

related to designing time predictable

multi-core architectures, e.g., MERASA

[27], PREDATOR [31], CERTAINTY [32].

In the MERASA project, a timing

predictable and WCET analyzable

embedded multi-core processor has been

designed with the appropriate system

software. The MARASA hardware

guarantees a time bounded access to shared

resources, where the processor executes

concurrent threads in isolation. The

MERASA system software that provides an

abstraction between application software and

embedded hardware uses a hardware-based

real-time scheduling and a thread control to

provide thread isolation. The experiences in

evaluating the WCET of parallel application,

at the MERASA project, are reported in [25].

The recommendation of this study is to

determine the parallelism and

synchronization in the parallel code for its

WCET analysis. However, the process

described in the study is completely guided

by the user and is specific to the estimation

of WCET of one component of the parallel

application (3D multigrid solver). Therefore,

it needs to be investigated further before it

can be generalized for other parallel

applications.

Conclusion

To ease the temporal validation of real-time

embedded multi-core systems, this paper

addresses the issue of analyzing the timing

behavior of parallel applications. For that the

Timing Analysis of Parallel Software Applications for Multi-core Embedded Systems

40

Timing Analysis tool for Parallel Embedded

Software (TAPES) is presented. TAPES

provides novel ways to capture the timing

properties of parallel executing threads such

as inter-thread flow information, thread

dependencies, and threads execution times.

On one side, TAPES allows to compute the

WCET estimates using a hybrid

measurement-based analysis. While

performing the hybrid analysis, a new

program flow analysis method is proposed

for parallel applications that describes their

high-level execution semantics. On the other

side, TAPES allows performing dynamic

analysis to capture the end-to-end execution

times of threads and the entire application.

The applicability of TAPES is demonstrated

by the timing analysis of three of the

benchmarks from an embedded parallel

benchmark suite. The results showed less

pessimism (i.e., over-approximation is below

16.77% on average) in the computed WCET

estimates, when compared to the measured

estimates. In the future, we aim to perform

the timing analysis of remaining benchmarks

in the suite using TAPES.

Acknowledgment

This work is funded by the program of

strategic technologies of the national plan for

science, technology, and innovation in Saudi

Arabia, under Project No. 11-INF1705- 10.

The authors would like to thank Science and

Technology Unit at Umm Al-Qura

University, for providing the necessary

support to conduct this research.

References

[1] Bate, I., & Kazakov, D. (2008, June). New

directions in worst-case execution time

analysis. In Evolutionary Computation,

2008. CEC 2008.(IEEE World Congress on

Computational Intelligence). IEEE Congress

on (pp. 3545-3552). IEEE.

[2] Binkert, N., Beckmann, B., Black, G.,

Reinhardt, S. K., Saidi, A., Basu, A., ... &

Sen, R. (2011). The gem5 simulator. ACM

SIGARCH Computer Architecture News,

39(2), 1-7.

[3] Burger, D., & Austin, T. M. (1997). The

SimpleScalar tool set, version 2.0. ACM

SIGARCH computer architecture news,

25(3), 13-25.

[4] Engblom, J. (2003, May). Analysis of the

execution time unpredictability caused by

dynamic branch prediction. In Real-Time

and Embedded Technology and Applications

Symposium, 2003. Proceedings. The 9th

IEEE (pp. 152-159). IEEE.

[5] Gustafsson, J., & Ermedahl, A. (2008).

Merging techniques for faster derivation of

WCET flow information using abstract

execution. In OASIcs-OpenAccess Series in

Informatics (Vol. 8). Schloss

Dagstuhl-Leibniz-Zentrum für Informatik.

[6] Gustafsson, J., Betts, A., Ermedahl, A., &

Lisper, B. (2010). The Mälardalen WCET

benchmarks: Past, present and future. In

OASIcs-OpenAccess Series in Informatics

(Vol. 15). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik.

[7] Gustavsson, A., Ermedahl, A., Lisper, B., &

Pettersson, P. (2010). Towards WCET

analysis of multicore architectures using

UPPAAL. In OASIcs-OpenAccess Series in

Informatics (Vol. 15). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik.

[8] Gustavsson, A. (2011). Worst-case

execution time analysis of parallel systems.

Real Time in Sweden, 104-107.

[9] Guthaus, M. R., Ringenberg, J. S., Ernst, D.,

Austin, T. M., Mudge, T., & Brown, R. B.

(2001, December). MiBench: A free,

commercially representative embedded

benchmark suite. In Workload

Characterization, 2001. WWC-4. 2001 IEEE

International Workshop on (pp. 3-14). IEEE.

[10] Healy, C., Sjodin, M., Rustagi, V., &

Whalley, D. (1998, June). Bounding loop

iterations for timing analysis. In Real-Time

Technology and Applications Symposium,

1998. Proceedings. Fourth IEEE (pp. 12-21).

IEEE.

[11] Healy, C. A., Arnold, R. D., Mueller, F.,

Whalley, D. B., & Harmon, M. G. (1999).

Bounding pipeline and instruction cache

performance. IEEE Transactions on

Computers, 48(1), 53-70.

[12] Kästner, D., Schlickling, M., Pister, M.,

Cullmann, C., Gebhard, G., Heckmann, R.,
& Ferdinand, C. (2012, September). Meeting

real-time requirements with multi-core

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

41

processors. In International Conference on

Computer Safety, Reliability, and Security

(pp. 117-131). Springer, Berlin, Heidelberg.

[13] Kebbal, D. (2006, August). Automatic flow

analysis using symbolic execution and path

enumeration. In Parallel Processing

Workshops, 2006. ICPP 2006 Workshops.

2006 International Conference on (pp. 8-pp).

IEEE.

[14] Performance analysis of embedded software

using implicit path enumeration. In ACM

SIGPLAN Notices (Vol. 30, No. 11, pp.

88-98). ACM.

[15] Li, Y. T. S., Malik, S., & Wolfe, A. (1999).

Performance estimation of embedded

software with instruction cache modeling.

ACM Transactions on Design Automation of

Electronic Systems (TODAES), 4(3),

257-279.

[16] Li, X., Roychoudhury, A., & Mitra, T. (2004,

December). Modeling out-of-order

processors for software timing analysis. In

Real-Time Systems Symposium, 2004.

Proceedings. 25th IEEE International (pp.

92-103). IEEE.

[17] Iqbal, S. M. Z., Liang, Y., & Grahn, H.

(2010). Parmibench-an open-source

benchmark for embedded multiprocessor

systems. IEEE Computer Architecture

Letters, 9(2), 45-48.

[18] Liang, Y., Ding, H., Mitra, T.,

Roychoudhury, A., Li, Y., & Suhendra, V.

(2012). Timing analysis of concurrent

programs running on shared cache

multi-cores. Real-Time Systems, 48(6),

638-680.

http://dx.doi.org/10.1007/s11241-012-9160-

2

[19] Lisper, B., Ermedahl, A., Schreiner, D.,

Knoop, J., & Gliwa, P. (2013). Practical

experiences of applying source-level WCET

flow analysis to industrial code. International

Journal on Software Tools for Technology

Transfer (STTT), 1-11.

[20] Lo, D., & Suh, G. E. (2012, June).

Worst-case execution time analysis for

parallel run-time monitoring. In Proceedings

of the 49th Annual Design Automation

Conference (pp. 421-429). ACM.

[21] Marref, A. (2009). Predicated Worst Case

Execution Time Analysis (Ph.D.
dissertation). York, UK.

[22] Ozaktas, H., Rochange, C., & Sainrat, P.

(2013, July). Automatic wcet analysis of

real-time parallel applications. In 13th

Workshop on Worst-Case Execution Time

Analysis (WCET 2013) (pp. pp-11).

[23] Park, C., & Shaw, A. (1990). Experiments

with a program timing tool based on

source-level timing schema. [1990]

Proceedings 11th Real-Time Systems

Symposium. doi:10.1109/real.1990.128731

[24] Potop-Butucaru, D., & Puaut, I. (2013).

Integrated worst-case response time

evaluation of multicore non-preemptive

applications (Rep. No. RR-8234). Retrieved

from https://hal.inria.fr/hal-

00787931/document

[25] Rochange, C., Bonenfant, A., Sainrat, P.,

Gerdes, M., Wolf, J., Ungerer, T., ... &

Mikulu, F. (2010). WCET analysis of a

parallel 3D multigrid solver executed on the

MERASA multi-core.

In OASIcs-OpenAccess Series in

Informatics (Vol. 15). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik.

[26] Theiling H., Ferdinand C., Wilhelm R.

(2000). Fast and precise wcet prediction by

separated cache and path analyses.

Real-Time Systems 18 (2-3) 157–179.

[27] Ungerer, T., Cazorla, F., Sainrat, P., Bernat,

G., Petrov, Z., & Rochange, C. et al. (2010).

Merasa: Multicore Execution of Hard

Real-Time Applications Supporting

Analyzability. IEEE Micro, 30(5), 66-75.

http://dx.doi.org/10.1109/mm.2010.78

[28] Wilhelm, R., Mitra, T., Mueller, F., Puaut, I.,

Puschner, P., Staschulat, J., . . . Heckmann,

R. (2008). The worst-case execution-time

problem—overview of methods and survey

of tools. ACM Transactions on Embedded

Computing Systems, 7(3), 1-53.

doi:10.1145/1347375.1347389

[29] Wu, L., & Zhang, W. (2012). A Model

Checking Based Approach to Bounding

Worst-Case Execution Time for Multicore

Processors. ACM Transactions on

Embedded Computing Systems, 11(S2),

1-19. doi:10.1145/2331147.2331166

[30] On-target software verification solutions.

(2017, July 25). Retrieved January 19, 2018,

from

https://www.rapitasystems.com/products/rap
itime.

[31] (alex@absint.com), A. A. (n.d.). Design for

Timing Analysis of Parallel Software Applications for Multi-core Embedded Systems

42

predictability and efficiency. Retrieved

January 19, 2018, from

http://www.predator-project.eu/

[32] “Certainty.” Certainty - Welcome to the

CERTAINTY Website !, Retrieved January

19, 2018, www.certainty-project.eu/.

