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Abstract 

Real-Time Embedded Systems (RTES) must be verified for their timing correctness where knowledge about the 

Worst-Case Execution Time (WCET) is the building block of such verification. Traditionally, research on the 

WCET analysis of RTES assumes sequential code running on single-core platforms. However, as computation is 

steadily moving towards using a combination of parallel programming and multi-core hardware, new challenges 

in timing analysis, and especially in WCET analysis need to be addressed. Towards this direction, this paper 

presents the Timing Analysis tool for Parallel Embedded Software (TAPES). The proposed tool allows the WCET 

estimation of parallel applications running on multi-core hardware through a hybrid measurement-based 

analysis method, that combines the program flow and timing information into an Integer-Linear Programming 

problem to estimate the WCET. In addition, the TAPES tool allows the measurement of the longest end-to-end 

execution time by capturing the timing properties of the parallel executing threads using time-stamped execution 

traces of the program. The applicability of the proposed tool is demonstrated through the timing analysis of an 

embedded parallel benchmark suite – the ParMiBench. The results showed that the calculated WCET estimates 

have significantly less over-approximation compared to the measured WCET estimates. The comparison of the 

calculated and measured WCET estimates showed modest over-estimates. 

Keywords: Multi-core Embedded Systems; Worst-Case Execution-Time Analysis; Parallel Embedded 

Software; Real-Time Systems. 

1. Introduction 

After hitting a technological dead end in 

providing further computational speed by 

increasing clock frequency, attention has 

been (re)put on parallel programming 

multi-core architectures as the solution to 

increase the performance of computation 

once again. Although the execution time of 

an individual task can be reduced by 

decomposing it into parallel executing 

threads, it poses a number of problems while 

designing Real-Time Embedded Systems 

(RTES), for example, in tasks scheduling. 

Generally, to ensure the correct working of 

RTES, a schedulability analysis is performed 

that checks all tasks can meet their deadlines 

at run-time. This requires the knowledge 

about the Worst-Case Execution Time 

(WCET) of the individual tasks. In addition, 

the WCET analysis is also required to 

guarantee the behavior of RTES and as an 

input to system response time computation. 

The WCET analysis is normally performed 

statically or dynamically [28]. The static 

analysis methods analyze the control-flow 

paths, without executing the program code, 

and combine this information with the 

abstract hardware model to obtain upper 

bounds. In contrast, dynamic analysis 

methods execute the program on actual 

hardware or simulator to measure its 

execution time [28]. Typically, 

measurement-based approaches are not 

considered to produce safe (i.e., not under 

approximated) estimates. Because the results 

obtained by measuring the execution times 

constitute a subset of the actual possible 

executions, where a pathological worst-case 

could have been missed during testing. 

Hence, reliable guarantees of observing the 

worst-case cannot be given. However, it is 

sufficient for soft RTESs where occasional 

misses of deadlines are tolerated. For 

safety-critical systems, where absolute safety 

of programs is required, static analysis 

should be performed. 

In static analysis, the necessary flow 
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information, such as loop bounds and 

infeasible paths, is derived in the 

program-flow analysis [1, 5, 10, 13]. Next, 

the execution times of the program segments 

are derived in the processor-behavior 

analysis, by statically modeling the hardware 

[4, 16, 26]. Finally, the results of the 

previous steps are combined together in a 

calculation method [11, 15, 21, 23] to obtain 

the WCET estimation. Unfortunately, these 

steps work adequately for sequential 

programs running on single-core 

architectures, but are challenged in the 

parallel-computing world. First, parallel 

applications do not execute as a stream of 

sequential instructions, so conventional 

control-flow analyses must be updated to 

consider the inherent concurrency. Second, 

hardware no longer has bounded timing 

behavior due to inter-thread interferences, 

which makes hardware modeling impossible 

or extremely hard. Third, WCET calculation 

techniques are suited for additive sequential 

models, where the execution times of the 

segments are added to drive the WCET.  

To overcome the disadvantages of both static 

and dynamic analyses, this work investigates 

a hybrid solution for the timing analysis of 

parallel embedded applications running on 

multi-core architectures. A hybrid approach 

combines the elements of static and dynamic 

analyses [19]. It has the same steps as static 

analysis, except that the processor-behavior 

analysis is replaced by direct run-time 

measurements on the hardware. In this work, 

we propose the Timing Analysis tool for 

Parallel Embedded Software (TAPES) that 

consumes a parallel program as input and 

produces its calculated and measured WCET 

estimates. To calculate the WCET, a novel 

program-flow analysis method is proposed 

for parallel applications that identifies the 

execution behavior of their sub-threads at the 

source code level. The obtained flow 

information is then combined with the 

execution times of the program segments to 

calculate the WCET estimates (hence termed 

as calculated WCET). In addition, TAPES 

also allows the measurement of the longest 

end-to-end execution time (i.e., the 

measured WCET) of the parallel program to 

capture its low-level timing behavior. The 

traces are obtained by executing the parallel 

application using Gem5 architecture 

simulator [2]. 

The layout of the paper is as follows: The 

next section details the preliminaries 

required to understand the rest of the paper. 

Section 3 provides the details of the hybrid 

measurement-based method used to 

calculate the WCET of parallel programs, 

followed by execution-time measurement 

details in Section 4. The effectiveness of 

TAPES is demonstrated via timing analysis 

of embedded parallel benchmark suite – 

ParMiBench [17], in Section 5. The related 

work is briefly surveyed in Section 6, while 

the paper is concluded in Section 7. 

2. Preliminaries 

2.1  Task/ Execution Model 

This work deals with computing the WCET 

estimates of a parallel program composed of 

synchronizing threads that execute 

simultaneously on multiple cores of a single 

device. Thus, it should not be confused with 

massively parallel systems involving several 

programs running on a grid of computing 

devices. Hence, the issues related to massive 

parallelism, such as communication costs 

due to networking of different nodes, are not 

dealt with. While most of the existing work 

(e.g., [22, 24]) assume a time-predictable 

shared-memory multi-core architecture, we 

consider the problem of finding the WCET 

for arbitrary multi-core hardware. It was, 

therefore, expected that the execution times 

in the case of hardware with no analyzability 

characteristics tend to vary tremendously 

because of unbounded interferences between 

the executing threads. Nevertheless, this 

work is scalable enough to be applied to both 

analyzable and off-the-shelf hardware. 

2.2  Scope 

This work focuses on parallel applications 

developed using POSIX threads, which is the 
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widely used industry standard for developing 

parallel programs. The POSIX standard 

provides the explicit characterization of 

thread control (creation and join) and 

synchronization through mutexes and 

barriers. The control of parallel program is 

handled implicitly by the POSIX thread APIs 

(Pthread). As a hybrid measurement based 

analysis is performed in this work that 

replaces the processor modeling with 

measurement of the execution times of the 

program segments. Hence, the 

micro-architecture analyses, such as 

contention effects caused by the parallel 

hardware are out of the scope of this work. 

3. Hybrid Measurement-Based 
Analysis 

The proposed TAPES tool uses the hybrid 

measurement-based analysis method to 

calculate the WCET estimates of parallel 

applications. The details of the hybrid 

method are provided below, which include 

the description of a novel program flow 

analysis method for parallel applications. 

3.1  Program Flow Analysis 

Contrary to sequential programs, the flow 

analysis of a parallel application is 

responsible to investigate the dependency 

among threads and the program concurrency. 

The proposed flow analysis method allows 

loop analysis and identifies the threads basic 

information, its dependencies and the 

program concurrency. To achieve this, the 

following steps are defined for the flow 

analysis of parallel embedded applications, 

as shown in Figure 1. 

 Thread Identification is related to finding 

the thread basic information, such as the 

number of threads created and the number 

of times these threads are created. This 

information is useful in thread scheduling 

and their mapping to cores. This step also 

includes analyzing the load balancing, 

i.e., how the work is distributed among 

the threads, as improper load balancing 

increases the discrepancy of execution  

 

Figure 1: Steps of the proposed program flow 

analysis method for parallel applications 

time between sub-tasks. Moreover, the 

task granularity is also analyzed in terms 

of its decomposition among threads. The 

fine-grained task decomposition would 

result in increased synchronization and 

communication overhead and vice verse. 

In such case, the time spend in 

synchronization and communication 

should be analyzed and added to the 

overall WCET. 

 Function Analysis allows the in depth 

analysis of the function passed to the 

thread. In a parallel program this is 

usually the code that is executing in 

parallel and thus has the major effect on 

the timing estimates. Inside the function, 

all the loops are analyzed, as embedded 

programs spend most of their execution 

time in loops and the one which seems to 

take more iterations is selected based on 

programmers observation. The selected 

loop is further divided into different 

segments as per the definition of a basic 

block [14]. The identified program 

segments are then instrumented with 

counters to count the number of times 

they are executed (termed as their count). 

This execution count information is 

required later in the calculation phase to 

compute the WCET estimates. 

Furthermore, different types of 

dependencies, if exist, are highlighted, 

such as data dependency or dependency 
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of one part of the program on the other. 

 Construct Identification deals with the 

identification of concurrency present in 

the parallel code. This is achieved by 

identifying the synchronization 

constructs, e.g., barriers, locks, condition 

variables, and joins. These construct also 

provide the synchronization related 

information, such as, the location where 

synchronization is occurring, threads 

sharing the sync variables, path on which 

a thread holds lock(s) and so on. This 

information is used in the next step to 

augment a Control Flow Graph (CFG). 

 CFG Development is concerned with the 

development of a conventional CFG of 

the parallel application. CFG is a data 

structure that defines the set of all possible 

execution paths of a task [28]. A CFG can 

be constructed automatically, e.g., 

through a compiler. Although conditional 

path analysis is not the aim of this 

research, the constructed CFG of the 

whole program can be used to determine 

all the conditional paths (as a CFG also 

includes all conditional paths). 

Consequently, a separate conditional path 

analysis is not considered. Further, as all 

edges and nodes of the CFG are taken in 

account to cover all possible paths, any 

state machine coverage analysis is not 

required. The thread’s information, 

collected in previous steps, is then 

augmented to the developed CFG to 

represent thread synchronization and 

dependencies. In this way, the flow 

related information of the parallel 

application can be accounted for within 

the WCET computation process.  

3.2  Execution Time Measurement 

The execution time (cost) of the identified 

program segments is obtained using a tracing 

mechanism that extracts timestamps from an 

instrumented parallel program. To achieve 

this, the program segments (basic blocks) are 

first enclosed with the instrumentation points 

(ipoints) that are inserted using m5ops utility 

provided by Gem5 simulator. m5ops 

provides timestamps without affecting the 

actual execution time, thus producing no 

instrumentation cost. While delimiting a 

basic block, these ipoint instructions cause 

the target to produce a timestamp upon 

execution. However, when this instrumented 

program is executed, it produces a bulk of 

information, which is given to the trace 

parser to extract the generated timestamps 

and hence compute the execution cost. This 

cost information is combined with the 

execution count information in the 

calculation phase to compute the WCET 

estimates. 

3.3  WCET calculation 

The WCET of a parallel program is derived 

by combining the flow constraints and 

executing times of program segments into an 

Integer-Linear Programming problem – that 

is obtained from Implicit Path Enumeration 

Techniques (IPET) [14]. The flow 

constraints include the execution counts, 

which represent the number of times each 

basic block is executed. Whereas, the cost of 

executing the basic blocks is obtained 

through instrumentation, as explained in 

Section 3.2. To derive the execution time 

estimate of each thread, the ILP problem is 

formulated as the following objective 

function, which is taken from [14]: 
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N

i

xcZ *=
1=


                  

(1) 

 

where ci is the cost a basic block in terms 

of execution time and xi is the number of 

times this basic block is executed. The 

vaiable x is bounded by loop iterations, 

which cannot be infinite. Infinite loops 

would never allow a RTES to meet its timing 

constraints and thus would lead to its failure 

An upper bound is determined by 

maximizing the sum of the products of the 

execution counts and times. 
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Figure 2: Internal working of the developed measurement-based analysis tool 

4. Dynamic Analysis 

TAPES also provides the facility to perform 

dynamic analysis of parallel applications, by 

executing and measuring the execution time. 

TAPES allows capturing the execution time 

of a parallel application, so that its execution 

can be analyzed from different aspects. 

Furthermore, TAPES can provide 

information regarding start and end times of 

threads, scheduling of threads, the CPU time 

taken by each thread, end-to-end time of 

each thread and the program itself. The 

starting and ending points of thread 

execution are detected, as depicted in Figure 

2, by reading the execution traces generated 

by the simulator. In this way, the execution 

times of individual threads, as well as the 

entire application can easily be calculated. 

To automate this process, an algorithm is 

developed that calculates the thread 

execution time from the obtained traces. 

5. Experimental Evaluation 

5.1  Execution Platform 

Like sequential programs, the measurement 

of parallel applications can be performed on 

the given hardware or on a simulator [28]. 

Simulation is one of the standard timing 

analysis technique that is used to estimate the 

execution time of tasks [28]. As this work is 

related to finding the WCET of arbitrary 

multi-core hardware, we do not assume a 

time predictable multi-core hardware (e.g., 

MERASA [27]). Instead, the widely used 

computer architecture simulator (Gem5) is 

used to simulate off-the-shelf multi-core 

hardware. One can argue on the use of the 

simulator for performance analysis instead of 

real hardware platform. Gem5 was selected 

as it is a cycle-accurate simulator that gives a 

cycle accurate model of the actual real-time 

embedded hardware [2]. Therefore, it 

provides the real-time behavior and almost 

the same impact as a real hardware platform. 

Moreover, Gem5 is a modular platform that 

provides full-system simulation to execute a 

program in the operating system 

environment, which is also our research 

interest. Additionally, Gem5 supports 

several commercial Instruction Set 

Architectures (just as ARM, ALPHA, x86, 

SPARC, PowerPC and MIPS), CPU types, 

cache levels, memory and other components, 

which make it more powerful than other 

similar simulators, such as SimpleScalar [3]. 

Initially, we did performed our experiments 

on Raspberry Pi. However, it did not provide 

any mechanism of getting traces, which 

could be used to obtain the exact clock cycle 

of the executed thread or its part, as needed 

in this work. Such facilities are only 

provided by the specialized equipment and 

tools provided by commercial companies, 

such as RapiTime by Rapita Systems [30]. 

Noticeably, these commercial products are 

very expensive and still do not provide all 

facilities needed for our experiment, such as 

support of simultaneous multithreading. 

Furthermore, during the process of design 

space exploration for real-time embedded 

hardware systems, it is not possible to use a 

fix hardware platform. For these obvious 

reasons, Gem5 proved itself as a perfect 
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choice for our experimentation. The 

configuration of Gem5 used in this 

experiment included four cores of ARM 

detailed architecture (ARMv7-A ISA based) 

with default size of L2 cache (2MB), 256 

MB of memory and ARM embedded Linux 

as the guest operating system contained in a 

disk image. The experimental stages of our 

framework are depicted in Figure 3. 

5.2 Benchmark Suite 

This research required a publicly-available 

software application which should both be 

embedded and parallel. To fulfill these 

requirements, ParMiBench suite was 

selected for experimentation in this work. 

ParMiBench is an open source parallel 

version of a subset of MiBench benchmark 

suite [9] – many of whose benchmarks 

appear to be suitable candidates for WCET 

analysis [6]. ParMiBench is a set of 

embedded parallel benchmarks that is 

actually designed to evaluate the 

performance of embedded multi-core 

systems. The benchmark is implemented 

using C language and POSIX threads to 

achieve parallelism and it supports 

Unix/Linux based platforms [17]. The Gem5 

simulator was used to execute the 

ParMiBench benchmark and measure the 

execution time of its threads. ParMiBench 

suite includes benchmarks from various 

domains of the embedded applications, such 

as control and automation, networks, offices, 

and security. These benchmarks are Susan 

(for image processing), BasicMath (for 

mathematical operations), StringSearch (for 

string searching), Dijkstra (to find the 

shortest path) and Sha (for data partitioning). 

We have used the standard gcc compiler 

without using any compiler specific 

optimization, so that the impact of 

compilation tools is minimized.  

Nevertheless, the role of compilation tools 

on parallelizing the user programs is 

recognized as out of scope of this work. 

Figure  3: Overview of the experimental framework used in TAPES for WCET estimates 
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Figure  4: Identified code segment 

5.3   Findings  

The following facts were revealed when the 

proposed program flow-analysis method was 

applied to the ParMiBench suit. While 

reporting our findings, usually all the 

benchmarks of the suite are discussed, but in 

some cases the explanation is focused on the 

StringSearch benchmark for simplicity. 

StringSearch benchmark is related to 

searching a string from a text file.   

 Thread Identification: In ParMiBench the 

number of threads is fixed in some 

benchmarks (e.g., Dijkstra and Susan), 

whereas in others the user is provided the 

option to enter. In some benchmarks, 

(e.g., StringSearch) threads are created 

only once as compared to other 

benchmarks (e.g., Susan), where threads 

are created twice or more. In ParMiBench 

static load balancing is used, i.e., the work 

is equally distributed among the threads. 

Instead of partitioning the program logic, 

the input data are divided in such a way 

that threads work independently. In 

addition, coarse-grained task 

decomposition has been used in most of 

the cases. In StringSearch benchmark, the 

sub-tasks such as task decomposition, 

data partitioning and distribution of work 

among workers are performed once and  

 

Figure  5: CFG of the identified code segment 

 

 

sequentially for all types of inputs. Thus, 

they have no major effect on the 

execution time.  

 Functional Analysis: Taking the example 

of StringSearch benchmark, the 

difference lies in the search method used, 

as far as the timing analysis is concerned. 

For instance, in the Pratt-Boyer-Moore 

search algorithm the while loop, shown in 

Figure 4, was identified as the potential 

code segment that would consume more 

time. This loop was divided into two basic 

blocks: the code used for shifting the 

characters (inner while loop – line 3-7) 

and the code used for comparison (the if 

statement – line 8-16).  

 Construct identification: To identify the 

concurrency in the parallel programs, we 

used mutex and condition variables 

present in POSIX thread library. The 

mutex variables provide locking and 

unlocking mechanism for mutual 

exclusion of critical section. We used the 

mutex variables pthread_mutex_lock and 

pthread_mutex_unlock variables for the 

identification of critical section in the 

code. The condition variables are used for 

the identification of thread 

synchronization. We used pthread_cond_ 

wait, thread_cond_signal and pthread_ 
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cond_broadcast variables for detecting 

the waiting and signaling to synchronize 

threads. 

 CFG Development: In this step, the CFG 

of the parallel application was developed 

(an example is shown in Figure 5). The 

CFG is augmented with the count 

information produced in the functional 

analysis step. 

5.4   Comparison and Observations 

In the scarcity of research studies on timing 

analysis of parallel programs running on 

multi-core architectures, it is very difficult to 

compare TAPES with the existing 

approaches. Firstly, TAPES allows hybrid 

analysis whereas the existing studies are 

based on either static or dynamic analysis. 

Secondly, each of these studies consider a 

particular aspect of parallelism different 

from others (details are provided in the 

related work section). Thirdly, each study 

has calculated the WCET estimates of 

different software applications. Lastly, the 

resources (e.g., the modified WCET 

estimation tool) for re-doing the experiments 

are not available. To evaluate the pessimism 

of the proposed hybrid solution the 

calculated WCET estimates are compared 

with the measured ones. This is not only  

due to the above mentioned reasons but is 

also in accordance with the general trend 

found in the research studies on timing 

analysis of parallel programs [8, 22, 24].   

Table 1 shows the measured WCET of 

different benchmarks obtained by executing 

them, the WCET estimates of these 

benchmarks calculated using the hybrid 

analysis and the percentage of pessimism in 

the calculated WCET estimates with respect 

to the measured estimates. Note that the units 

of time, in Table 1, is the number of 

processor clock cycles. From the table, it can 

be observed that the calculated estimates 

bound the measured estimates. This is 

precisely the benefit of using the hybrid 

analysis: the WCET estimates are computed 

using the measured execution times of 

program segments and flow information, 

instead of relying on the worst-case input to 

trigger long end-to-end execution times. 

However, other real life software 

applications would be needed to test the 

scalability of this analysis. One major 

obstacle in this regard is the unavailability of 

such software applications which are 

embedded, real-time and parallel using 

Pthreads standards. Since, such real life 

applications are not yet available, scalability 

testing of this analysis cannot be performed 

and left as future work.    

6. Related Work 

In the literature, the WCET analysis is 

performed through static analysis [24], 

model checking [7, 29] and 

measurement-based approaches [21], as 

depicted in Figure 6. However, there have 

been few contributions towards timing 

analysis of parallel programs, as the existing 

WCET-analysis research mostly focuses on 

sequential programs running on single-core 

architectures. Rochange et al. [25] for the 

first time highlight the problem of analyzing 

the timing behavior of nonsequential 

software on a multi-core architecture. They 

report a manual analysis of a parallel 

application, which determines the 

synchronization and communication among   

its executing threads. In the following, we 

shall exclusively review WCET analysis of

Table  1: The measured WCET estimates along with the WCET estimates calculated using the hybrid 

analysis. 

Benchmark WCET Measured WCET Calculated Pessimism 

String search 12886961500 14991728000 16.33 % 

Susan 10702583000 11836753000 10.60 % 

Dijkstra 4357948800 5376740000 23.38 % 
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parallel programs, which is the topic of this 

research.   

The worst-case reponse time(WCRT), of 

parallel applications running on multi-core 

platforms, is computed in [24]. Instead of 

proposing a new technique, the approach 

extends a state-of-the-art WCET estimation 

method to estimate the WCRT of parallel 

applications. In this regard, only the control 

flow analysis phase is modified: the classical 

control flow analysis runs (separately) on the 

functions/tasks that are put in parallel, and 

then new edges are added between basic 

blocks to model synchronization / 

communications among tasks. One new edge 

is added for each inter-task communication 

along with duration to model the message 

transmission time for communications. The 

hardware-level analysis runs unmodified on 

each function/task taken in isolation, as if it 

was not communicating with the other tasks 

executed on the other cores. Similarly, the 

WCET computation step is applied 

unmodified, as new constraints are 

automatically added in the WCET 

calculation equations (by introducing new 

edges) and communication delays are 

automatically taken into account.  

A method for determining the impact of 

parallel monitoring on WCET is defined in 

[20]. The method calculates the maximum 

monitoring stall (time) and add it to the 

WCET calculated using popular methods. 

The traditional ILP based analysis for 

sequential program is extended to 

incorporate the overhead of monitoring. A 

FIFO behavior is added between the main 

and the monitoring cores. This non-linear 

FIFO behavior is modeled as a MILP 

problem to produce worst-case monitoring 

stalls. These can be incorporated into 

traditional IPET methods for WCET 

estimation.  

An approach for automatic timing analysis of 

parallel applications is presented in [22] that 

show how to compute the synchronization- 

related stall time of individual threads. The 

WCET of the parallel program is determined 

by computing the WCET of the main thread 

and adding to it the worst-case stall time of 

child threads at synchronizations. The stall 

time of child threads is computed based on 

two types of synchronization patterns 

(critical sections and progress 

synchronizations). To ease the identification 

of these patterns, an annotation format is also 

designed. However, the approach relies on 

user-provided annotations to identify the 

synchronization patterns. 

In the existing work, path based analysis 

methods used for WCET calculation, are 

classified as tree-based, path-based and 

IPET-based [28] (see Figure 6). In tree-based 

calculation, the WCET bound is calculated 

by bottom-up traversal of an abstract syntax 

tree of the program. Although tree-based 

calculation is very fast, they return loose 

WCET estimates [21]. Path-based 

calculation derives WCET considering all 

paths of the program, requiring the 

examination of an exponential number of 

paths [21]. In IPET-based calculation, the 

program flow information and execution 

times are transformed into an ILP problem 

where the longest execution is maximized 

[28]. The WCET analysis of parallel code 

can also be performed using the 

model-checking techniques [7] (using the 

model-checking on the timed automata 

system). The structure of the program is 

represented by the timed automata and then 

the UPPAAL modeling and verification tool 

is used to perform WCET analysis. The 

WCET analysis is performed by running the 

model-checker (to verify system properties) 

using UPPAAL automatically. However, the 

drawbacks of this method are reported by the 

authors in an ongoing research work [8] on 

analysis of threads synchronization. 

Research on WCET estimation on multi-core 

architectures has mainly focused on the 

predictability of accesses to shared 

resources. For example, the predictability 

features and the timing variance of single and 

multi-core processors are analyzed in [12]. 

The paper provides an overview of the 

hardware features leading to predictability 

problems. Some examples of multi-core 
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Figure  6: Classification of Worst-Case Execution Time estimation methods 

configurations are also shown. To obtain 

predictable multi-core architectures, several 

configuration and design recommendations 

are presented. These include the 

recommendations for cache replacement 

policies, shared bus protocol, private caches 

and private memories. 

Similarly, a WCRT analysis method is 

presented [18] for concurrent programs 

running on shared cache multi-cores. The 

concurrent programs are visualized in the 

system model as graphs of Message 

Sequence Charts. The L1 cache behavior is 

analyzed for each task in each core 

independently (intra-core cache analysis). 

By using a filter, only the memory accesses 

that miss in the L1 cache are analyzed at the 

L2 cache level. Similar to L1, the L2 cache 

behavior is analyzed for each task in each 

core independently, assuming no conflict 

from other tasks in other cores. An iterative 

solution (L2 cache conflict analysis and 

WCRT analysis) is proposed to overcome 

the conflicts of L2 cache (by estimating and 

exploiting the lifetime information for each 

task in the system). 

There also exists some research projects 

related to designing time predictable 

multi-core architectures, e.g., MERASA 

[27], PREDATOR [31], CERTAINTY [32]. 

In the MERASA project, a timing 

predictable and WCET analyzable 

embedded multi-core processor has been 

designed with the appropriate system 

software. The MARASA hardware 

guarantees a time bounded access to shared 

resources, where the processor executes 

concurrent threads in isolation. The 

MERASA system software that provides an 

abstraction between application software and 

embedded hardware uses a hardware-based 

real-time scheduling and a thread control to 

provide thread isolation. The experiences in 

evaluating the WCET of parallel application, 

at the MERASA project, are reported in [25]. 

The recommendation of this study is to 

determine the parallelism and 

synchronization in the parallel code for its 

WCET analysis. However, the process 

described in the study is completely guided 

by the user and is specific to the estimation 

of WCET of one component of the parallel 

application (3D multigrid solver). Therefore, 

it needs to be investigated further before it 

can be generalized for other parallel 

applications. 

Conclusion 

To ease the temporal validation of real-time 

embedded multi-core systems, this paper 

addresses the issue of analyzing the timing 

behavior of parallel applications. For that the 
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Timing Analysis tool for Parallel Embedded 

Software (TAPES) is presented. TAPES 

provides novel ways to capture the timing 

properties of parallel executing threads such 

as inter-thread flow information, thread 

dependencies, and threads execution times. 

On one side, TAPES allows to compute the 

WCET estimates using a hybrid 

measurement-based analysis. While 

performing the hybrid analysis, a new 

program flow analysis method is proposed 

for parallel applications that describes their 

high-level execution semantics. On the other 

side, TAPES allows performing dynamic 

analysis to capture the end-to-end execution 

times of threads and the entire application. 

The applicability of TAPES is demonstrated 

by the timing analysis of three of the 

benchmarks from an embedded parallel 

benchmark suite. The results showed less 

pessimism (i.e., over-approximation is below 

16.77% on average) in the computed WCET 

estimates, when compared to the measured 

estimates. In the future, we aim to perform 

the timing analysis of remaining benchmarks 

in the suite using TAPES. 
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